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As part of an assessment of research needs in the space
prime-power area, a special conference was convened at the
Omni International Hotel in Norfolk, VA, 22-25 February 1982.
The intent of the Conference was to review the state-of-ﬁhe-
art of space prime-power technology, including new or :
advanced concepts, and to discuss research needed for progress J
toward megawatt power levels. The Conference was attended by
over 190 scientists and engineers from universities, govern-
ment, and private organizations. Over eighty papers were
presented, including discussions of chemical, nuclear and
radiant energy technigues, power conversion, heat rejection,
materials, chemical and fluid physics, and also reviews of
i power requirements for future NASA and DoD systems. ) I

The Special Conference on Prime-Power for High-Energy
Space Systems provided a useful opportunity for research
scienéists-and technologists to educate each other on
problems and progress in space prime-power. Although the
AFOSR interest is basic research, the Conference also served
as a forum for description of systems, concepts, and programs
with particular mission requirements, and for discussion of :
research ih support of specific devices or needs. The

- proceedings of the Conference, (consisting of over 1700
pages of text and view graph copies), were compiled and
distributed to Conference attendees.
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By the year 2000, an increasingly large portion of our
national defense will depend on space-based systems. Extra-
polation of present trends indicates that prime-power sources
operating at megawatt levels and beyond will be needed. These
power levels must be achieved at significantly higher values
of specific power (w/kg) and energy (w~hr/kg) than are
presently available in order to satisfy defense needs for
maneuverability and survivability. While steady progress
has been made and new concepts have provided the potential
for further improvements, substantial gains over the next
two decades will probably require investment in basic
research examining fundamental processes and phenomena in
power conversion, material behavior, surface interactions,
etc. As part of a broader set of new research initiatives

in support of space systems, the Air Force Office of Scien-
h tific Research will be sponsoring basic research that may be
applicable to the development of megawatt-level space prime~
power systems. (The emphasis of this particular new initia-~
i tive is prime-power versus pulsed power including power
- conditioning, such as flywheel or inductive storage, for
which there are existing programs.)
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As part of an assessment of rasearch needs in the space
prime-power aresa, a special conference was convened at the
Omni International Hotel in Norfolk, VA, 22-25 February l1982.
The intsnt of the Conferern « was to review the state-of-the~
art of space prime-power zschnolegy, including new or
advanced concepts, and to discuss research needed for progresn
toward megawatt power levels. The Conference was attended by
over 190 scientists and engineers from universities, govern-
ment, and privats organizations. Over eighty papers were
presentad, including discussions of chemical, nuclear and
radiant energy techniques, power conversion, heat rejection,
materials, chemical and fluid physics, and alsc reviews of
power requirements for futurs NASA and DoD systems. The
Conference agenda is displayed in Fig. 1, in terms of tech-
nical topics, session chairmen, and first authors.
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From the session on prime-power needs, distinctions could
be drawn between the continumous power levels required by NASA
and DoD missions involving long-term propulsion and station=- J
operation, and the intermittant needs of some proposed DoD-
missions for very high power levels (107-108w) for several
seconds or longer. The latter DoD requirement, which does
not have routine parallel requirements in NASA, tends to
broaden consideration of prime-power technology options. For
example, it may be reasonable to expect that continuous :
multimegawatt power for orbit changes (including deep space 3
missions away from the sun) will require space-nuclear reac-
tor systems. A few second burst of 100 megawatts, however,
might be better provided by a chemically-driven MHD system.
In support of possibly broader requirements for high power,
it may be anticipated that AFOSR would have broader research
interests in the space prime-powar area.

The first two days of the Conference were largely devoted
to a review of technology so that basic research scientists
could learn from technologists about the existence of various
systems and critical problem areas. Chemical sources were
reviewed, including batteries, fuel calls, and combustion-
driven MHD. Related power conversion technigques were also
discussed in the form of turbogenerator developments and
several MHD methods connected to chemical sources. (Other
MHD systems, not strictly chemically-driven, were also
described on the first day.)

Discussions of nuclear sources included both developments
from earlier NASA/AEC efforts, such as the present SP-100
program, and also advanced concepts in the form of rotating- L
fluidized bed systems. Attention was also given to safety
issues for space nuclear power, shielding considerations, and
research needs. The nuclear session was followed by a short i
session on power conversion tachnologies (Brayton, Rankine, &
thermoelectric), which are often closely connected to nuclear "
sources. The needs for improved data on high temperature
materials and better theoretical understanding, (e.g., ther-
moelectric propertiaes and scaling) were also discussed.

The session on radiant systems covered a range of tech-
nologies and concepts involving photons in one way or another
These technologies included photowvoltaic concepts (tandem
photocells and thermal-photovoltaic), sclar-thermal approaches,
and various possible ways of generating laser light for trans-
mission of power through space (solar-, nuclear-, optically-
pumped lasers). New concepts for converting light to elec-
tricity were also described, such as radiation-driven MHD,
plasma-diocde conversion of laser light, and a device to con-
vert light to RF (actually demonstrated at the Confarence).
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The lasat full day of the Conference tended to concentrate
on scientific research issues, But also included descriptions
of technology and concepts. It was readily anticipated prior
to the Confarence that materials research would be a critical
requirement for progress toward high power in space. Indeed,
the session on materials was quite extensive, comprising 15
papers on subjects such as surface modification technigues,
reactor materials, ceramics, materials testing, structural
characterization, and electrical insulation. Closely related
to materials research were topics in chemical physics research
and thin films, discussions of which completed the morning's ;
activities. ' '

In the afterncon, thermal energy was considered in various
manifestations: thermionic snergy conversion research and |
technolqeqgy, heat rejection technigques, and thermal stress
analysis of large space-structures. The session on thermion-
ics included a review of the DoE program in thermionic
research, in addition to descriptions of systems such as in-
pile thermionic diodes and prospects for performance improve-
ments by understanding and controlling particle collection
geometries. Advanced radiator designs, such as ligquid droplet
and liquid metal film concepts, were discussed in the session
on heat and systems. This session also included consideration
of heat pipes, thermal management of power systems, and soft- $
ware for analysis and optimization of power systems. Problems '
and uncertainties of analysis and prediction of large space-
structures, such as required for support of solar arrays, mir-
rors, radiators, etc., were also discussed.

The last day of the Conference consisted primarily of a
morning session in which the session chairmen summarized
discussions that took place both within their formal sessions
and also at the discussion symposia that concluded each (very
full) day of the meeting. (In order to complete the eighty
papers of the Conference in a single~session format, Qques-
tions during the formal sessions were limited to ones of
clarification. Detailed questions and answers were obtained
in writing and posted at the discussion symposia for inspec-
tion by Conference attendees and for continued discussion by A
interested parties.) On the last day, the session chairmen
were also offered the opportunity to prasent their personal
viewpoints on space prime power.

l Repeatedly during the Confersnce, attendees were reminded
that AFOSR is interested in basic research issues applicable
' to spacs prime—-power development, rather than specific mission-
oriented Qevices, schemes, etc. Within the Department of
Defense, funding for research is divided along both discipli-
l nary lines (e.g., physics) and mission immediacy. Basic




research is performed under DoD sponsorship at two levels of
immediacy: a) directly in support of a single mission
requirement (designated "6.2" for physics research) and b)
applicable, but not necassarily applied, to more than one
mission (designated "6.1" for physics). An example of 6.2
research would be understanding pulsed high temperature
Plasma radiation sources in regimes of interest for nuclear
weapons simulation. Understanding plasma/surface chemistry
at a level applicable to lasers, switching, and re-entry
vehicles would be 6.1 research. While a variety of specific
pPrime-power systems of Air FPorce interest may require
research, the mission of AFOSR is to foster research at the
fundamental (e.g., 6.1) level rather than to fund research
and development of particular, single-mission-related
devices. Other parts of the Air Force have responsibilities
for such development, and also for research needed to accomp-
lish development succassfully. (Note that, in the other
extreme, fundamental research not clearly applicable to scme
defense mission may not be of sufficiently immediate interest
to qualify even for 6.l-type funding.) To assist qualified
and interested scientists in participating in the AFOSR
initiative for space prime-power research, a document is
being prepared, based in part on the Conference, that will
describe fundamental raeasearch areas appropriate for AFOSR
attention. Similar gquidance may be available for other AFOSR
space initiatives, such as advanced propulsion for orhit-
raising and maneuvering.
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The Special Conference on Prime-Power for High-Energy
Space Systems provided a useful opportunity for research
scientists and technologists to educate each other on
problems and progress in space prime-pocwer. Although the
AFOSR interest is basic research, the Conference alsoc served
as a forum for description of systems, concepts, and programs
with particular mission requirements, and for discussion of
research in support of specific devices or needs. As with
any effort in basic research, the most important results of
the Conference may not be measurable for twenty years. All
that can be said now is that a small step has been made
toward a destination of critical national importance.

Lt. Col. A. K. Byder and P. J. Turchi

Air Force Office of R & D Associates
Scientific Research Washington Research
Bolling AFB Laboratory
Washington, D. C. Alexandria, VA
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"Space, the Air Force, and AFOSR"
by
Hartke, R. H.

(Paper not available)

Q & A

From; J. S. Zimmerman, General Electric

Please explain division/overlap of missions of AFOSR
and DARPA.

A, .

AFOSR is the basic research agency within the Air Force.
Our research strategy.will, therefore, emphasize those areas
appropriate for the air force mission areas.

DARPA is a DOD-level basic and exploratory research
agency looking at tri-service mission areas.

There is constant coordination between the two, and in
many cases AFOSR acts as the DARPA contracting agent.

From: W. R. Seng, TECO

What priority is given to system hardness? Is there any
quantified guidance available to describe 1990-2000 (year)
requirements?

A,
Second question first: I can offer n¢ quantitative
guidance on hardness requirements 20 years hence.

First question: While system hardness is not an issue of
the workshop, I understand the tendency to refer to it as a
key parameter of concern. At this point, like compactness,
reliability, efficiency, etc. , it is a consideration more
at the later stages of system design than at these early
stages of basic research. Ultimately, at the later stages,
it will doubtless rank near the top of the priority list.
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Q & A - M. Cohen

From: Roy Pettis -

You have emphasized nuclear reactors for future very high
power systems. For the pulsed applications--EDLs and Particle
Beams-~do you believe that open-cycle, combustion-driven sources
can fulfill the missions, because of the limited run-times
reguired (100s of seconds)?

A.

We have not ruled out any source for the high power
applications. A potential problem with open cycle , combustion
sources is that a system may have to be turned on and off a
number of times as that resupply. This would be an option to
be considered as part of a trade study.

From: Bob Davidson, R & D Associates

Please provide a bibliography of your future requirements
studies.

A.

There is no specific bibliography. A starting point is
the Military Space Systems Technology Model AF Report
SD-TR-82-01 (secret). It is available thru the DTIC.
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ABSTRACT

PONER REQUIREMENTS FOR MANNED SPACE STATIONS
by

Gordon R. Woodcock and Sidney Silverman

Manned space stations now in preliminary design will exhibit power needs from
25 to 150 kW. Studies have examined solar cell/battery, solar cell/regen—
erative fuel cell, and nuclear systems. This paper will summarize the power
requirements, the tradeoff between batteries and regenerative fuel cells,
including how the electric power system can be integrated with other
functions, and nuclear concepts. The influence of mission applications on
selection of the power system will be discussed, including low Earth orbit and
high Earth orbit civil missions and potential military missions.
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(For proceedings of Conference on Prime Power for High-Energy Space Systems
held at Norfolk, VA on 22-25 February 1982)

POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

Leonard H Caveny
Aerospace Sciences Directorate
Air Force Office of Scientific Research
Bolling AFB
Washington, DC

INTRODUCTION

Future Air Force space missions require substantial increases in propulsion
efficiency. Advances are required in both orbit raising and maneuvering
propulsion. Several of the more attractive propulsion concepts require -
continuous electric power at the megawatt level. Propulsion considerations can
not be separated from those of power, since advances in space propulsion and
power share a number of important technological barriers. Thus Space Propulsion
and Power is being pursued by AFOSR as a unified FY83 multidisciplinary research
initiative. The emphasis is on establishing long-term basic research which
anticipates and supports technology and development programs for the 1995 to
2000 time frame.

In the last decade, many novel propulsion concepts were investigated [Mead, 1972
and Papdiliou, 19751%. Prior to the present considerations, the concepts could
have been placed in such categories as:

- Sufficient onboard power did not exist.

- Air Force requirements did not justify additional research.
Solutions to fatal flaws could not be foreseen.
An important technology was lacking.
Knowledge of the concept was narrowly held, thus it escaped attention.
System performance penalties were too great.
But probably the dominant consideration in previous years was that the Air Force
could perform the required missions with conventional chemical propulsion.
Consequently, major initiatives to provide technology and to overcome barriers
were not warranted.

Advanced concepts for space propulsion periodically receive attention in
advanced mission studies but only moderate support for sustained basic research.
However, the projections for the end of this century offer the promise of
sustained interest and activity. The space shuttle capability plus the
inevitability of the expanding Air Force role in space are forcing definitions
of major new propulsion requirements., The transfer of large payloads from low
Earth orbits to higher orbits coupled with requirements for maneuvering justify
the investment required to achieve major advances in propulsion.

*Indicates citations in the bibliography which provide background information.
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

PROPULSION

Propulsion systems are being considered in two categories: conventional
{chemical) and nonconventional (e g, beamed energy and electric). If the
investments are made, the Air Force can be assured of having significantly
improved chemical propulsion systems available by the end of the century;
however the projected specific impulse gains are on the order of 10%. The
nonconventional systems offer specific impulse gains of hundreds of percent but
involve larger risks and, possibly, higher costs and longer lead times.
Development programs will improve the efficiencies, versatility, and payload
capabilities of liquid propulsion systems (e g, the advanced RL10 system using
liquid H, and 05) and solid rocket systems (e g, the IUS system of motors).
These advances are extremely important since each percentage point increase in
propulsion system efficiency can yield significantly larger increases in payload
weight in geosynchronous orbit (GEO). In particular, typical low Earth orbit
(LEO) payloads for subsequent trips to GEO are 50 to 80% propulsion and fuel.
Further improvements in chemical systems (e g, replacing O, with F,, using metal
hydrides) should be achievable in the next decade. In addftion. advances in
refrigeration to permit long term (or even indefinite) storage of H, wi11
provide additional options for both propulsion and power. Solid propulsion
systems are expected to take advantage of new energetic ingredients (e g, more
energetic binders, burning rate control). Thus the Air Force is continuing basic
research on specific aspects of chemical propulsion. However, with respect to
propulsion the primery emphasis of the FY83 initiative will be on
nonconventional propulsion. Consistent with the theme of the meeting, the
discussions that follow tend to emphasize those propulsion concepts requiring
megawatts of electric power,
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POWER REQUIRFMENTS FOR ORBIT RAISING PROPULSION

TYPES OF PROPULSION SYSTEMS

As a means of classification, several types of propulsion concepts are compared”
on a propulsive efficiency (exhaust velocity) and thrust density plot. 1In terms
of the SI units, exhaust velocity (meters/second) is the appropriate measure of
specific impulse for space propulsion systems. (The more traditional measure of
rocket specific impulse in 1bf/lbm-sec is approximately one-~tenth the exhaust
velocity in meters/second.) At the lower range of thrust density are the highly
efficient ion engines [Finke,1981] which have have reached a developed status
through sustained NASA sponsorship. The present embodiments of the ion engines
are attractive for NASA planetary missions but do not provide for sufficiently
rapid orbit raising for many of the projected Air Force missions. (However,
advances in power conditioning systems and operation at higher power levels are
expected to lead to more favorable conditions for ion thrusters.) Higher thrust
densities are provided by the lower efficiency chemical rockets which are
presently being used for orbit raising. As previously discussed, the chemical
systems are reasonably well developed and have a limited upside potential. As
part of the FY83 initiative AFOSR is concentrating on the large increases in
performance that are available in the intermediate thrust-density range. Thus
attention is being given to approaches such as solar- and laser-beamed energy
(Weiss, Pirri and Kemp, 1979], magnetoplasmadynamics (MPD) [Finke, 19811,
nuclear [Layton and Grey, 1976], deflagration driver [Cheng, 1971] and
intermittent combustion [Mead, 1972]. The chart does not include some of the
approaches which are presently the subjects of adequate programs or which do not
fit the time frame of the FY83 initiative. For example, propulsion concepts
using atomic hydrogen is the subject of a research effort being coordinated by
NASA-Lewis. Furthermore the resources of the FY83 initiative will be
concentrated on the basic research which supports two, possibly three, of the
most promising propulsion approaches.
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

MAGNETOPLASMADYNAMIC THRUSTER

The magnetoplasmadynamic thruster is an example of a concept which offers large
increases in performance. Thrust densities up to 10 newtons/meter?2 appear to be
achievable, Research on this concept at Princeton University under NASA/JPL and
AFRPL sponsorship continues to produce encouraging trends, In particular,
recent results [Jahn, Clark, Burton, and King, 1981] indicate that electrode
configuration and flow field improvements can lead to major improvements in
onboard-power-to-thrust-power efficiencies, Efficiencies as high as 60% are
being projected. However, major questions relating to items such as electrode
life, maximum continuous power, and scaling of laboratory results require
continuing research.
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

BEAMED ENERGY PROPULSION

The promise of very high energy laser and beamed energy systems, either Earth or
orbit based, may lead to very large gains in specific impulse. Since energy is
applied from external sources, propellants can be selected without the need for
oxidizers to produce combustion. The chart shows two of the many concepts which
have been considered [Weiss, Pirri, and Kemp, 1979 and Jones 1981]. The sketch
on the left illustrates a pulsed energy thruster, A lower energy pulse is used
to gasify a condensed fuel; the resulting region of gaseous fuel is then
accelerated by a higher energy pulse to impart impulse to the system. " The
sketch on the right illustrates a thruster which operates in the continuous
mode. Energy beamed through a window heats a continuously flowing working
fluid (e g, H, seeded to absorb radiation). Beamed energy can produce
temperatures %i e, 10,000 to 20,000 K) considerably above those produced by
adiabatic combustion. Beamed energy propulsion concepts have been the subject
of several recent programs. For example, Rocketdyne is conducting a program
under AFRPL sponsorship to assess the potential of using solar concentrators to
heat the working fluid. The extent beamed energy propulsion systems will
require space power will depend on the.location of the beamed energy source.
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POWER REQUIREMENTS FCR ORBIT RAISING PROPULSION

THERMAL MANAGEMENT

All continuously operating propulsion and power systems must deal with the
realities of having to reject large amounts of waste heat. Indeed the rejection
of waste heat can be the performance limiting factor. In particular, space
propulsion devices require cooling of components such as nozzles, chamber, =nd
electrodes, The liquid-droplet radiator [Mattick and Hertzberg, 1981] is a
potential breakthrough which may enable the promise of several of the higher
performance systems to be realized. The projected weight reductions and
reliability increases of the liquid-droplet radiator designs are leading to
re-evaluations of the system options. The liquid-droplet radiator is the
subject of separate presentation in these proceedings.
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

POWER FOR ELECTRIC THRUSTERS

Most of the electric thrusters of interest can operate if power of 100 kW and 3
above is available. However, higher efficiencies at more useful thrust ranges ;
will occur at the multi-megawatt level. By way of illustration, an example is ;
given of pulse and continuous thruster operation from a continuous megawatt
power source. If the thruster requires pulse power (e g, the deflagration
driver), a properly matched power conditioning system is desirable both to make i
efficient use of the power source and to achieve improved efficiency from the
thruster. Other propulsion concepts are expected to achieve maximum performance
when operated in the continuous mode (e g, the magnetoplasmadynamic thruster).
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POWER REQUIREMENTS FOR ORBIT RAISING PROPULSION

CONCLUSION

As part of the planning for the appropriate research, an assessment of space
propulsion barriers and research is being conducted and documented. This is
being accomplished, in part, by a coordinated group of position papers which are
being prepared by investigators who have broad experience in the disciplines
impacting space propulsion. The papers are addressing the topics in terms of
the broader generic classifications of the concepts. The papers are to provide
broad coverage of the underlying technologies leading to descriptions of the
technical and research issues. The position papers are not intended to provide
solutions to complex issues, rather they are to provide an introduction and
prospective on the challenges. The Air Force report containing the position
papers will be available after February 1983.

During the next year, AFOSR will continue to establish a research program which
addresses the basic research issues. As this is accomplished, we will keep in
mind the synergisms among space power and space propulsion.

I-5-14 . e -
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SESSION II.

CHEMICAL SOURCES




"Chemical Sources: Overview"
by
Clark, J.

(Paper not available)

Q & A -J. Clark

From: Robert Taussig, Math Sciences NW

How do you resolve the question of launch weight for
your low power, high voltage (IMW)Liefer to paper by Manny
Cohen for powers greater than 50 kW]if you rely on solar
photovoltaic cells for these missions? This approach would
seem to be too heavy for single shuttle launch.

A.

It depends on operating time. A Ag-Zn battery system
would be about 13 watt-hrs/lb. 13 watt hrs/lb ~ 1.5 MW -
minutes/2000 lbs.

So the batteries are no problem. Lithium primary cells
would be less than half the weight of the Ag-Zn battery
system.

Recharging - -granted, the largest reasonable array may
still require considerable time to recharge the batteries.

The key is that we are probably talking about short discharge ~

times; seconds to a few minutes.

IT-1
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CHEMICAL SOURCES - BATTERY

Robert A, Brown ’ Eagle~Picher Industries, Inc.
Electronics Division
Couples Department

Joplin, Missouri
64802
The particular aspects of space power requirements that are

critical to batteries are discussed. Power density and emergy demnsity

values for various electrochemical systems and battery configurations

are shown as a function of the time duration of the power pulse.

Characteristics of the possible battery systems are listed in order

to match specific battery systems to individual power requirements.

A general. discussion is presented regarding the advantages batteries

offer over other types of power sources.
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NARRATIVE DESCRIPTION OF VIEWGRAPHS

CRITICAL SPECIFICATION ITEMS

This table presents the particular operational requirements that have
the most control over the design of high power batteries. Since the rate at
which a battery must convert its chemical energy to electrical energy is
extremely critical, the design of high power and high energy batteries are
c.apletely different. Otherbcharacteristics, such as wet life, cycle life,
temperature limits, mechanical features influence the electrochemical system
selection and can be traded off against each other and against power and Z?

energy density in the design of a specific battery.

DESIGN CONSIDERATIONS

This table presents the choices that are available to the battery

[—)

designer that are not necessarily dictated by the operational requirements.

————

These factors can influence the over-all battery weight and volume by as much
as 50% and have an impact on the battery complexity, reliability, safety, \

cost, and mechanical interface with other equipment.

BATTERY SYSTEM CHARACTERISTICS

o

A comparison is shown between four prominent elec;rochemical systems
suitable for military and aerospace applications. The silver-zinc, nickel-
zinc, and nickel-~cadmium systems have been available for some time; while '}

the lithium-thionyl chloride is relatively new.

II-2-2

A T - vt o e




auE O SN . e —

AT, T AR & it A\ ANRRR MDD a1 S 5 R A e W A BBt LR s MR L il e - Sk

SYSTEM POWER DENSITY

This chart shows ;he povwer density available from various electrochemical
systems and battery configurations as a function of the duration of the
power pulse. The lithium—-thionyl chloride system is generally thought of
as a low power battery, however for fairly long duration pulses this system
can offer a higher power density than other systems. This results from

the high cell potential and the low weight electrode materials.

SYSTEM ENERGY DENSITY

This chart shows the energy density available from various electrochemical
systems and battery configurations as a function of the duration of the
power pulse. This data is calculated from the previous chart assuming one
pulse of the iandicated duration. Shorter duration pulses can be repeated
if the battery is a;lowed to reach equilibrium between pulses, so that the
higher energy densities are theoretical possible even at the short duration/
high power pulses.

BATTERY ADVANTAGES

This table summarizes the areas where batteries cam offer an advantage

over other power sources for high power space systems.
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CRITICAL SPECIFICATION ITEMS

ELECTRICAL REQUIREMENTS

- HIGH POWER vs. HIGH ENERGY
- PULSE DURATION & FREQUENCY FOR HIGH
POWER BATTERIES

OPERATIONAL LIFE

CHARGE RETENTION REQUIREMENTS

CYCLE LIFE

TEMPERATURES
- HIGH TEMP DEGRADES LIFE

- LOW TEMP DEGRADES PERFORMANCE

VENTING RESTRICTIONS

II-2-4
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DESIGN CONSIDERAT IONS

ELECTROCHEMICAL SELECTION

CONFIGURATION - CONVENTIONAL vs. PILE

MODULE/SUBMODULE SIZE

SAFETY

RELIABILITY

IT-2-5




BATTERY SYSTEM CHARACTERISTICS

SILVER-ZINC

OPERATIONAL LIFE © MonTHS
LIMIT:
CHARGE RETENTION: Minimum LOSSES
CvcLe LiFE: 10-100
CosT: $200/KWH
SAFETY: MINIMuM Risks
DeEVELOPMENT STATUS: PRESENTLY AVAILABLE -

IMPROVEMENTS POSSIBLE

NickeL-ZINC

3 YEARS

20% Loss-30 Davs-
250C

50% Loss~4 Davs-
710C

10-250

$300/ KWH

MiNnIMuM RIsks

N
|
PRESENTLY AVAILABLE
IMPROVEMENTS PoSSIBLE




BATTERY SYSTEMS CHARACTERISTICS

OPerATIONAL LIFE
LimiT:

CHARGE RETENTION:

CycLE LIFE:

CosT

SAFETY:

DeEVELOPMENT STATUS:

NickeL - CADMIUM

5-10 YEARS

20% Loss - 30 pAays - 25°9C
50% Loss - 4 pays - 710C

20 - 250

$450/ KWH

MinIMuM RIsks

- PRESENTLY AVAILABLE

IMPROVEMENTS POSSIBLE

LiTHIuM-THIONYL

CHLORIDE
5-10 YEARS

EXPECTED TO BE
MINIMAL

$200/KWH

DeveLopPMENT
NEEDED

UNDER DEVELOPMENT




AD~A118 887

UNCLASSIFIED

29

R AND D ASSOCIATES ROSSLYN VA F/6 10/2

PROCEEDINGS OF THE AFOSR SPECIAL CONFERENCE ON PRIME-~POWER FOR ==ETC(U)

FEB 82 P J TURCHI . F49620~82=C~0008
AFOSR=TR=82=0655 NL

-




Liemgag ‘u8yse@ TRUOFIUDAUOC) - IPFIOTY) TAUOTYL-WNFYIF]

Aaepuodag a[dL) oy ‘uBysoaq I[Td 118ME3I = DUTZ-IIATFS

A1epuodag aT24) QT ‘u8ysag [PUOTIUSAUO) = DUFZ-TINIIN
uoyrleang asind

UTH 0t UIH G UTH T 93§ 0Ot 2985 ¢ 295 1 stoOT suQ1 sy

00%

008 N/ .\Ina\nuuuz ,_
/ uziIN
/ 1% ,
_ /A./ 4
E oozt N / 08 <
3 q1/s33eM m H
m ootk “T08¥1 uzIN = W
W
<4 01 |
{
000Z | qr{s3iepn m
uz |3y - 0%1 ;
009z cuI |/s33en -4 091
w / - 081
. | ~——
] 002

ALISNIA YIMOd WALSAS




punog /sinoy~313eM

uoyieing asyng

UTH 0f UTH ¢ Ul T 99s 0f 235 01
qT/HN UZIN
1
¢NI/HM UZIN
os b ‘ t
q1/HM uz3y ¢
o
o
001 1 = o~ _
¢NIJ/nm uzsy 7 M
5 = i
L)
S~
S |
0sT - ¢NI/HM T v m
. 2100511 :
q1/HM -4/ I
2100811 ]
L
00C = e (]
s
eﬁF o1

ALISNI([ ADYINT WILSA]




BATTERY ADVANTAGES

o POWER AVAILABLE INSTANTANEQUSLY - NO START-UP REQUIRED

o CAN START & STOP POWER DRAIN AS OFTEN AS DESIRED -
WIDE RANGE OF POWER LEVELS AVAILABLE

o SIMPLE CONSTRUCTION - RELIABILITY
o QUALIFIED FOR RUGGED DYNAMIC ENVIRONMENTS
o NO MOVING MECHANICAL PARTS

o MINIMAL POWER CONDITIONING

e COMPLETELY SELF CONTAINED - NO FUEL OR AUXILIARY EQUIPMENT
REQUIRED

e BATTERIES AVAILABLE TODAY - BETTER SYSTEMS UNDER DEVELOPMENT
* HMODULAR CONSTRUCTION - BUILD UP TQ ANY DESIRED POWER LEVEL

* INEXPENSIVE

» RAPID TURN-AROUND WITH SECONDARY SYSTEMS
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Q & A - R. A. Brown

From: B. R. Junker, Office of Naval Research

What are the limiting factors determining the 10-100
cycle lifetime on AgZn batteries?

Answer:

From: Roy Pettis

In proposed weapon applications, many very-high-power
pulses will be required; a reasonable example might be
20~-100 pulses of 2~10 second long at v 30 MWe. Batteries
are appealing because their high energy density is compat-~-
ible with the total energies above. How much will the
battery energy density decrease at such high power levels
(30 MWe)? Will the battery system risk damage in fast
discharge/rest/discharge cycles? Wwhat battery would be the
best choice for such a mission, requiring a combination of
high energy density and high power density? -

Answer:

From: Frank Rose, Naval Scientific Weapons Center

Most of the material discussed by you came from Air
Force studies/experiments in the early 70's. Are there new
battery concepts in R & D stages? If so, what energy
densities appear feasible? What R & D problems remain to
be solved?

Angwer:

From: P. J. Turchi, R & D Associates

What are the failure modes limiting discharge time vs
power density? What measurements need to be made to
determine reasons for failure mode development?

Answer: .

IT-2-11




Q & A - R. A. Brown {(Cont)

From: Capt. Steven Wax, Air Force Office of Scientific
Research

What is fundamental limitation (kinetic,etc. diffusion)
for the rate of power removal? What research might improve
the efficient removal of chemical energy at higher rates?

Answer:
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Alkaline Fuel Cells for Prime Power and Energy Storage
J. K. Stedman

Presented to the
Space Prime Power Conference
Norfolk, VA
February 22, 1982

ABSTRACT

Alkaline fuel cell technology and its application to
future space missions requiring high power and energy storage
are discussed. Energy densities exceeding 100 watthours per
pound and power densities approaching 0.5 pounds per kilowatt
are calculated for advanced systems. Materials research to
allow reversible operation of cells for energy storage and
higher temperature operation for peaking power is warranted.
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Q & A -~ J. Stedman

From:

What perturbations does the fuel cell exhaust cause on
the spacecraft:

A.

In orbhiter H, and O, vents are small and directed 180°
opposed to neutralize tarusts.

In high power fuel cell cooled by boiling water same
technique could be used. Water flow is nominally 3 l1lbs/kw-hr
@ total pressure of 1 atm, 200° F.

From: P. J. Turchi, R & D Associates

What process(es) have been identified as limiting
efficiency of fuel cells:

A.

O, electrode activation loss associated with catalysis
reduces voltage (eff) by = 20% from a theoretical 100% in
H9=02 cells. Remainder of loss is associated with diffusion
o% reactants and products with electrodes and ohmic losses
associated with electro.yte.

From: P. J. Turchi, R & D Associates
Does power density vs current density start to drop off
at high current density because of load line effects, or some

other effect?

wWhy does voltage output drop off with current density:

A. 12w Pe cetical U
—actwaben laas -

i .
"_---"Ms T -" S ohmeclors '
el | Sachalcan TJ , B
ve |Ylb03.( ‘\A\st-'“\-u t
wlls A~ Power dans s
T ) ZF!",“ QZ‘E‘-AuO“":

G ™Y G {ugn‘
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"Turbogenerators"
by
Oberly, C. E.

(Paper not available)

Q & A-C. E. Oberly

From: J. Biess, TRW Systems

Could the insulating material for the superconducting
wire be used for capacitor dielectric? What is dielectric
factor and recommended operating temperatures?

A.

We are looking at these ceramics as potential capacitor
dielectors. They retain the inherent problems of ceramic
dielectrics: air bubbles and low energy storage density.
If high thermal conductivity material were used, it could be
of great advantage for fast repeating pulses but temperatures
and refrigeration below 100 K would be required. We are
currently evaluating dielectric constants, strengths and
partial discharge resistance of these materials.
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SESSION III. CHEMICAL/MHD




"MHD Power: Overview"*
-J. B. Dicks
Applied Energetics, Inc.

*Omitted are those photographic slides which were not
reproducible. :
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Figure 2 -

SPECIAL CONFERENCE ON PRIME POWER FOR HIGH-ENERGY SPACE SYSTEMS
FEBRUARY 22-25, 1982
Norfolk, VA

Figure 1 - Shows the Brilliant concept of MHD application. This

application was to proceed as a high priority of the
Defense Department in the middle 1960's. It resulted
in a project directed by the Air Force Aeropropulsion
Laboratory in cooperation with several other Air Force
laboratories. Its intent was to gather together the
technology needed to make a high power night time
illumination system. The project was eventually
terminated because the application was no longer

of high priority due to changing international
conditions and because some delay would have been in-
troduced in order to produce a satisfactory super-
conducting magnet and illumination system. Contractors
on the power system were Thrysler Space Division, J. B.
Dicks & Associates (now Apvlied Energetics), and the
University of Tennessee Space Institute.

This is the only attempt ever made by the military to
apply MHD to a practical mission. It resulted in
studies of apparatus and systems which would allow a
high power MHD power supply to be mated to typical air~
craft of the date. These requirements do not differ
greatly from those prese.tly being considered in space.

Shows an actual MHD channel constructed for this program
in a mock-up of one of the magnets that were constructed
by the Air Force laboratories under contract to match the
requirement. The general construction and arrangement
shown here does not differ greatly from what might be
used for a contemporary high power supply in the range
between 250 kilowatts to 1000 kilowatts. The general
cylindrical design shown on the magnet would be that
used whether or not a superconducting magnet is used.
Alternates are, a self-excited copper magnet, or a
super-coated aluminum magnet. The design shown here
allows for pool cooling which might be used in any

of these cases. It also allows for the cryogenic
cooling by the pool methcd. However, cooling is not
necessary and self-excited magnets would work for the
order of 100 to 200 seconds depending upon its weight.

The cylindrical configuration results from the fact

that so-called pancake coils pressed around a cylindrical
form provide the most efficient magnet. The channel itself
is of circular cross section in order to utilize the
magnetic field most effectively. A number of circular MHD
configurations have been operated in the past and would

be used anytime a magnet has no iron used in this
construction.
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Figure 3 - Shows such a device had mounted the illumination application
is purely arbitrary and other suitable applications could be
substituted for it. The MHD power supply is particularly
appropriate for application in which the time is short.

One has to construct the pod so as to avoid upsetting on-
board aircraft systems or on-board spacecraft systems. The
aircraft mounting and spacecraft mounting do not differ
appreciably if it is desirable tc have a separate pod or
self-contained power supply and any application devices
associated with it.

Figure 4 - Shows a pod mounted version of a liquid fuel system of this
type. Improvements in combustion and better understanding
of fuels represent the greatest advance ‘in MHD power generation
for military applications made since this work was done. The
present techniques are fuel injection liquid or powdered solid;

would allow such applications to equal or better the performance
discussed for solid type propellents below. The solid type used

in an MHD generator ir not as well known as the use of liquids
in such a generator and therefore these would be discussed in
somewvhat more detail.

Figure 5 - Shows the development of the diagonal wall conducting wall
generator which in some form or other forms the basis for
most American generators that have been operated. This
construction of solid conducting frames of copper within
the insulator are sarndwiched between them, works well for
military applications because the heat sink design is
particularly easy, the strength is high, and the durability
is sufficiently long for any military mission for which MHD
is suitable.

The theory of the diagonal wall (DCW) is quite complex, the
most complex of all generators, but its construction is )
the simplest and stron est.

Figure 6 - Shows the result of the technology required in military programs

applied to the civilian central power MHD program. This is the
CFFF in Tullahoma, Tennessee, a relatively complete pilot plant

now in operation and setting records as far as pollution control
is concerned. The connection between this technology and military

technology is not particularly close as none of the pollution

control technology is required for short time military application.

Figure 7 - This shows the high field six Tesla superconducting magnet that
has been constructed for the CFFF at the Argonne National
Laboratories in Chicago. It was tested twice last summer at
6 Tesla and is a very large magnet. This magnet, on military
fuels, is capable of yielding hundreds of kilowatts of power
and should be available for testing for any such military
power on a non-interference basis with DOE projects.
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Figure 8 -

Figure 9 -~

Figure 10~

Figure 11-

Figure 12-

Figure 13-

Figure 14-

Shows a solid fuel combustor furnished by the Hercules
Corporation for a test series by the University of Tennessee
Space Institute at Arnold Engineering and Development Center
in 1967 under my direction. The cylindrical portion rules
a 9 1b. roughly 10 inch long, 6 inch diameter solid fuel
grain shown in the next figure. The rectangular portion

is a carbon nozzle and this device was bolted to some of

the liquid fuel generators that existed at that time.

Shows a grain of pollutant used in this testing. The solid
loading was of the orde~ of magnitude of 40X with a large
amount of potassium and aluminum present. The aluminum
oxide and other chemicals coated the walls of the generator
to a depth of several millimeters.

Shows the end of a generator run on the solid point with the
coating used protruding from the end. The present of this
coating and the fact (as shown later) that it does not effect
power generation in the generator appreciably. It allows one
to reduce the heat trausfer to the walls of the generator
drastically as this podium builds up.

Illustrates current voltage and power characteristics from
the solid grain. Some of the instability near the end is
the result of fluctuations in combustion in the grain as
the end of the chamber is reached.

Shows power curves comparing liquid and solid fueld of the day.
One will note that the solid fuel power production is of the
order of 200 or more kilowatts while the liquid fuel of power
production from the same generator is much, much less (about
30-40 kilowatts). This advantage of the solid fuel has been
reduced somewhat with later experience by much improved com-
bustion and by more carefully choosing the liquid fuel used

to minimize the electron collision cross section in the
generator and thus, to .aximize power.

Shows more of the solid deposit on a single electrode. It will
be noted that this solid deposit covers the generator so well
that no contaminate penetrates into the insulator. Also the
covering of the generator by this material allows a much higher
standoff voltage in the generator so that the technology of 10
vears ago would give, under these conditions, about 10 kilowatts
per meter of generator length.

Illustrates what can be done by using additional additives to
the fuel. This is not the result of operating with solid fuel,
but by placing high temperature additives in the flow to pur~
posely build up a coating inside the generator. Coatings in
this case were as great as centimeter in thickness without
drastically effecting the power production of the device.
Again the advantage here is that it is possible to operate

in this fashion with much, much reduced heating of the gen-
erator channel and much, much longer operation in the heat
sink mode with much less cooling required in the case in
which cooling is used.
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Figure 15

Figure 16

Figure 17

Figure 18

Shows the Soviet generator operated by Velikhov using two
solid fuel rocket charges. One to bring up the field in
the coils and the second to produce maximum power.

Shows the data given on these experiments, the weight of
the system and the pilot plant generator. Such a system
i3 not optimized. Much weight could have been saved through
the use of a saddle coil rather than the circulur coil shown.

Shows the experimental results on a generator run in Mainland
China in a self excited mode giving a power output of approxi-
mately 500 kilowatts. This simply shows that self excitation
is widely performed. In the beginning of the MHD program in
the United States, Mr. Tor Brogan, one of the Avco laboratory
employees succeeded in getcing approximately 30 megawatts

from a large self excited liquid fuel generator.

Shows a modern combustor designed to run with preheated
oxidizer and coal as a fuel. The coal is blown in through
a central tube and then spread out into the oxidizer flow.
Such a system might be used with grandulated solid fuel in
order to gain improvements in system over those presently
being operated. Such a s, stem would have the advantage of
a larger control ability, restart capability, and the
possibility of idling power. As a matter of fact, such a
system will run with seed control and would allow one to
operate a power trajectory as may be required by some of
the devices for application.

Figure 19 - Shows a schematic of this combustor with the coal coming in

through the central port. The oxidizer, through a plate
vhich has a hold pattern in it, creates a great deal of
turbulence. The oxidizer is preheated through burning
with some auxiliary fuel so that the hot oxidizer strikes
the fuel in a highly turbulent mixing zone with preheat
raising the temperature to the auto-ignition point. Under
these conditions a very short combustor can be utilized for
nearly complete combustior before the product enters the
generator itself. This provides for a minimum heat release
to the combustor which, in the kind of applications we are
considering here, would be lined heavily with ceramic material.
Ceramic material will not last permanently, but would last
over the several hours which represents the maximum duty
cycle of the MHD generator. :
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BASIC RESEARCH TOPICS 1N MHD

MHD is one of those technologies which has reached an engineering
status that would allow it to be applied where the need for short time
high powered systems arise. It has the advantage of almost immediate
full power production from an iner: start, is thus capable of high
reliability, but i{s limited in time to that available utilizing un~
cooled heat sink configurations. Such a time at present is of the order
of 100-150 seconds with extended lifetime depending on the amount of
cooling are placed in the sysctem. All of this technology is based
on an engineering understanding of the device, but comparatively
little physical understanding. The phenomenon involved are complex,
involving a combination of Maxwell's equations with the gasdynamic
equations. Furthermore, the phenrmena of the boundary layer between
the hot plasma and the cold electrodes are in a even more difficult
regime of temperature over shoots, recombination, surface interaction,
and prevalent surface phenomena. Further there is the coated generator
where the walls are covered with combustion products and/or manufactured
material where the conductivity through such hot solid state materials
is poorly understood. There are, therefore, a variety of basic physical
problems in the generator that need to be esolved and which would
eventually result in much improved performance if they could be under-
stood from a standpoint of basic physics.

In connection with the generator is the combustion process which
is also of great importance and the area in which the greatestimprove-
ments are the problews of gasdynamic turbulence, two phas flow, and
general plasma chemistry. The plasma chemistry is complicated enough
with the questions of electron attachment, collision cross section,
species concentration, etc. When :hese are combined with two phase
flow as occurs in the case where a material such as aluminum is added
as a fuel resulting in aluminum oxide which may be either in the liquid
or solid phase in the flow, one enters an area that has been little
explored from a basic standpoint. 1t is desirable to know the extent
of physical interactions between the solid particle and the gas, both
gasdynamically and electrically. Such particles, in general, are at
a higher temperature than the flow around them because of the time
delay in heat transfer as the flufd expands through a nozzle between
the particles and the fluid itselt. Since it is possible to get a
variety of material compositions in such particles which may vary from
essentially a insulating particle to one which partially conducts due
to the presence of absorbed potassium for example. Thus there is a
whole range of basic physics that could be done with profit in this
area.
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From:

1)

2)

3)

4)

Answer:

Q & A -J. Dicks

A, P. Fraas

What was the maximum electrical output from one of
your coal-fired MHD generators?

What was the fuel feed rate and chemical energy input
rate for the above case?

What would the compressor power input have been if
you had been able to use preheated air instead of
liguid 02?

Wwhat was the equivalent power requirement if you had
generated O2 rather than use stored liquid 02?
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ABSTRACT

Combustion driven magnetohydrodynamic (MHD) generators show great promise
for both flight and ground-based electrical power generation. The Lewis
Research Center (LeRC) has in operation a small (4-12 MWT) cesium-seeded
Hp-02 combustion MHD generator to investigate performance and fluid
dynamics at high magnetic field levels. This combustion system was chosen
because of its attractiveness for lightweight systems, the H»-02 combustion
expertise at LeRC, and the simplicity of the Hp-07 system which facilitates
the understanding of the basic processes involved.

The MHD power generation experiments are conducted in a high field strength
cryomagnet (fig. 1? which was adapted from an existing facility. In its
original construction, it consisted of 12 high purity aluminum coils pool
cooled in a bath of liquid neon. In this configuration, a peak field of 15
tesla was produced. For the present experiments, the center four coils were
removed and a 23 cm diameter transverse warm bore tube was inserted to allow
the placement of the MHD epxeriment between the remaining eight coils as shown
in the cross section insert in figure 1. In this configuration, a peak field
of > 6 tesla should be obtainable. The time duration of the experiment is
limited by the neon supply which allows on the order of 1 minute of tota:
operating time followed by an 18-hour reliquefaction period. As a result, the
experiments are run in a pulsed mode. The run duration for the data presented
here was 5 sec. The magnetic field profile along the MHD duct is shown in’
figure 2. Since the working fluid is in essence superheated steam, it is
easily water quenched at the exit of the diffuser and the components are
designed vacuum tight so that the exhaust pipe and demister can be pumped down
to simulate the vacuum of outer space.

The primary purpose of experiments conducted to date have been to
understand the basic phenomena associated with MHD power generation at high
magnetic field strength and to produce data necessary to validate computer
codes. The effects investigated are listed in figure 3.

In figure 4 the power output versus the square of the magnetic field is
plotted for various MHD channel configurations. Shown are four Hall channels
varying in exit to inlet area ratio from 2.56 to 6.25 and one diagonal wall
channel having an area ratio of approximately 5. It is noted that the power
output increases linearly with BZ for Hall ducts up to an area ratio of
6.25. At this area ratio there is an abrupt departure from linearity as shown
by the dashed line. This is due to the diffuser shock (supersonic duct)
moving upstream into the power generating region of the channel. This shock
13 removed by operating with vacuum exhuast and the linear dependence with
B¢ is again observed as shown by the solid curve (6.25/1 AR-vacuum). The
figure also shows the increased performance obtainable through the use of
diagonal wall channels. The single point shown at the top of the figure
represents the highest output achieved by operating fuel rich. The point
represents a power output of 175 kW which represent an extraction of 3.5
percent of the input enthalpy.

Figurz 5 is a list of effects requiring further investigatiou.
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Q& A-J. M. Smith

From: Robert Clark, Naval Research Laboratory

What multidimensional MHD computer codes do you intend
to use to check the design of your devices? References?

Answer:
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The MHD Disk Generator as a Multimegawatt Power Supply
Operating with Chemical and Nuclear Sources

J.F. Louis
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
ABSTRACT
The characteristics, performénce and status of the MHD disk generator
are reviewed as a potential multimegawatt power supply working with both
chemical and nuclear sources.
The disk generator is found to be a compact high interaction power
unit with simple construction simple power conditioning and using a
circular superconducting coil. The radial flow of the disk assures zero
thrust in open loop operation and its construction simplicity may provide
significant reliability and weight advantages.
The disk generator can be operated as a high voltage, low current
power supply. Experiments have shown the disk generator as high power

(900 kW), high power density (500 lem3

), high enthalpy extraction (15%)
device which has been operated with electrical fields up to 37 kV/m. The
disk generator can be operated in an open loop with either chemical or
nuclear heat sources. In a closed cycle system, the disk generator can be
used in a Braylon cycle using He as a working fluid and in a Rankin cycle
using either potassium or lithium vapors as working fluid. In both cases,
the generator operates in the non-equilibrium mode. The estimated weight
of a 1 We driven in a Braylon cycle using a fast nuclear reactor is around
S kg/kW. An important advantage of this closed cycle is the compact
radiator operating at high temperature,

In the coupling of the disk generator with a Hz—o2 rocket engine, the

disk generator operates with an equilibrium plasma (seeded with cesium) of

III=-3-~1




relatively high conductivity. This high conductivity allows a high

interaction and a large fraction (25%-40%) of the inlet enthalpy to be

extracted.

The research needs should cover studies on:

n
2)

3)
4)

5)

6)

Effective plasma properties in non-equilibrium generators

Plasma properties in generators operating at Hall coefficient with
full seed ionization

Performance of disk generator with inlet swirl
Boundary layer effects in disk generators

Chemical non-equilibrium effects in generator driven by chemical
energy

electrode configuration and electrode effects
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igure 1 indicates the different paths available for the conversion of
chemical or nuclear energies into electricity. Allpaths except
HHD, leading to electricity use surface effects for the con-
version process whereas MHD depends on a volune effect.

fhergy conversion in a volume rather than through surfaces has

l significant weight advantages for space application
l IIT-3~-3




MHD Generators for Space Power

Figure 2.

The volume effects are found to be larger than wall effects at a level
in excess of 1 MWe for MHD geuerators.

MHD generators can be used with high temperatuie heat sources driven by
chemical or nuclear energy. )

With chemical energy, the weight of fuel and oxidizer limits the opera-
tion to a few minutes. With combustion gases, the electron temperature is
equilibrium with the expanding gas. The generator should provide a single
output and no net thrust. The exhaust of the combustion gases to vacuum provide
a high expansion ratio which allows a high enthalpy extraction limited only
by the minimum conductivity. At the low pressure end, the generator has to
handle a large volume flow and there is the possibility of non-equilibrium

effects at the low pressure end.

Driven by a nuclear reactor, an MHD generator could be operated for a
total time close to one hour. The working fluid could be He or H,. In both
cases, the generator would operate with electron temperatures appreciably lar-
ger than the temperature of the working fluid. Again, simple loading and no

thrust would be required.

Since the MHD generator is a turbine, it can be used either by Rankine
or Brayton closed loop cycles operating for long periods of time such as days.
The working fluid can be helium, for the Brayton cycle and lithium or potassium

supersaturated vapors for Rankine cycles.
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3) NUCLEAR ENFRGY
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NON EQUILIBRIUM OPERATION TE> T

HIGH CXPANSION RATIO

HIGH ENTHALPY EXTRACTION

HIGH VOLUME FLOW/UNIT OF ENERGY
POSSIBILITY OF NON EQUiLIBRIUM

B

TOTAL OPERATION TIME UP TN ONE HOUR

WORKING FLUID He ok i)

:  SPACE POWER AND AUGMENTED THRUST
TOTAL OPERATING TIME = DAY
RANKINE OR BRAYTON CYCLES
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Figure 3., The Disk Generator

The outward flow disk generator shown in Figure 3 1is particularly well
suited for space power. The generacor creates no thrust; it is a single
cutput device; it eliminates the mulriple electrodas by circular symmetry;
it 1s made of two circulating walls which can take higher electrical fields
than the electrode walls of linear generators. This configuration eliminates
end losses associated with the fringing of the magnetic field. The disk con-
figuration can accommodate large expansions and wakes of the magnetic field
created by a single pancake coil. The disk generator is a high specific power
but aiso high voltage-low current MHD generator.
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MAX. ELECTRIC EFF.

wTEFF
FIGURE 18 ELECTRIC EFFICIENCY VvS. SWIRL RATIOQ AND wrt
To = 4900 K (Nitrogen)
P
,ﬁ? To = 3350°K (Argon)
Y T, = 2¢50 K (Argon)
Figure 4. .

The use of inlet swirl allows increases in efficiency as shown and demon-
strated in Figure 4.
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DISK _GENERATOR

1) HIGH EXPANSION ——> OQUTFLOW DISK GENERATOR
2) FEW ELECTRODES

3) HIGH ELECTRIC FIELD )
. E
DISSIPATION OVER ELECTRODE WALL X

E 2
DISSIPATION OVER INSULATOR C X 7
[l + (wr) ]

Ryax 2 Oy

Figure 5.

The outflow disk generator is indicated for high expansion ratio devices
to be used for space power. The few electrodes required by the disk lead to
higher reliability and simpler power conditioning than for the linear generator.

Whereas the dissipation over an electrode wall is proportional to the
scolar conductivity, the dissipation over an insulating wall is proportional
to conduc: vity expressed as a tensor. As a result the maximum electric field
which can be sustained in the disk generator is wrtr larger than the maximua
electric field sustainable in an linear generator.

Since wT can easily equal to 4 or 5 in space applications, the disk
generator is a high voltage and low current generator.

Electric fields up to 37 kV/m have been measured in the laboratorv.
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Figure 6.

The maximum power density can be achieved with little inlet swirl and
the maximum power density of disk generator is larger by at least one order
of magnitude over the linear generator.
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and by a high temperature fast neclear reactor.

' Figure 8. gives sketches of 1 MWe disk generators deiven by a uz-oz rocket
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Preliminary Weight Estimate

Svstem Study #1 - 1 MWE

WEIGHTS: .
'1 MWE
th
Reactor 600 .
Shield 1200
Geﬁerator‘Puct, Nozzle and Diffuser 70
Magnet ' 950
Refrigerator (Magnet and Motor) (20 watt) 140
Regenerator (at 1.5 Rgm/mz) 280
Radiator (at 5.5 Kgm/mz) 900°K,e = 0.9 960
Ducts 80
Compressor (at 0.02 Kgm/KW) 90
Motor (12,000 rpm; Multipole) 320
Controls 50
Refrigerato:c:n:r (20 KW —a‘t 25 kgm;fGJ) éqo‘
o ' spio-
Total Without Shi;;; o

4040 .

Figure 9. gives the weight estimate of a closed loop, Brayton cycle, power

system using a fast nuclear reactor.

kg/

is §

hW hWe

For 1 MWe output, the estimated weight

e and should be reduced toward 1 kg/ at the 100 MWe level.
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1))

2)

3)

)

5)

STATUS OF DISK GENFRAIOR

PLASHA" PROPERTIES WELL UNDERSTOOD
[NON EQUILIBRIUM WITH LOW SEED
CONCENTRATION NEED TO BE BETTER UNDERSTOOD]

DISK PERFORMANCE WELL PREDICTED
FOR SHOCK TUNNEL OPERATION

TECHNOLOGY OF DISK WALLS CAN ADAPT
TECHNOLOGY OF INSULATING WALLS
OF LINEAR GENERATORS

WALL EFFECTS UNDER QUAS] STEADY
STATE NEED 10 BE TESTER

CHANNEL ENGINEERING NEED 1O BE
DEVELOPED

Fietre 10
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_PROPOSED PROGRAM

D) GENER VEN D r

1) SYSTEM STUDIES TO DEFINE OPTIMUM OPERATING PARAMETERS

2) PULSE EXPERIMENTS USING CHEMICAL ROCKET (10 MH(7w)|
| WITH LOW VACUUM EXMAUST AND E1THER CONVENTIONAL
COPPER MAGNET OR SUPERCONDUCTING MAGNET

EVALUATE 1> CHANNEL CONSTRUCTION
2) CHANNEL PERFORMANCE
3) ELECTRODE EFFECTS :
4) WALL EFFECTS ’
5) POSSIBLE NON-EQUILIBRIUM
EFFECTS i

3) SYOCK TUNNEL TESTS
TO STUDY: 1) PLASMA PROPERTIES
2) POSSIBLE NON-EQUILIBRIUM EFFECTS
3) ELECTRODE CONFIGURATION
4) PERFORMANCE

Frewre 11

Figure 11 and 12. describe proposed programs for the use of the disk genera-
tor in space. The research topics deal with channel performance, electrode
effects, effect of seed concentration and dissipation mechanisms within the
generator at high values of the Hall parameter
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"PROPOSED PRUGRAM

DISK DRIVEN BY NUCIFAR ENFRGY
SYSTEM STUDIES TO DEFINE OPTIMUM OPERATING PARAMETERS

PULSE EXPERIMENTS USING HEAT STCRAGE FACILITY WITH PARTIAL
VACUUM TO TEST CHANNELS AT DEFINED CONDITIONS
EVALUATE 1) CHANNEL CONSTRUCTION

2) CHANNEL PERFORMANCE

3) ELECTRODE EFFECTS

4) EFFECT OF SEED CONCENTRATION

S) QN EFFECTIVE o AND wr
SHOCK TUNNEL EXPERIMENTS
T0 STUDY EFFECTS OF TEMPERATURE

PRESSURE

SEED CONCENTRATION
FAGNETIC FIELD

Ficure 12

III-3-15

min o MR IR L L T Vel et e

. e — e me




i o

Q & A~J. F. Louis

From: P. J. Turchi, R & D Associates

What are fundamental research issues that distinguish
disk generators from standard MHD generators? Azimuthal

symmetry?

A, !
The fundamental differences distinguishing the disk

from the linear generators are associated with the circular

symmetry which eliminates the electrodes, this leads to

reduced losses , simpler power conditioning

and also the disk uses a much simpler magnet. This leads to

higher power density.

From: Roy Pettis,
Would pancake coils suffice for the field magnets for a i

disk generator? Wwhat channel construction and magnet con-~
struction problems would you expect for a disk generator?

A. )

National Magnet Laboratories made studies of the magnet
system. These studies indicated that a pancake coil would
suffice.

The magnet construction is simple and has been demon-~
strated. You will find more details on both magnet and
generator construction in Ref. 3.
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SELF-EXCITED MHD POWER SOURCE FOR.SPACE APPLICATIONS

C.D. Maxwell, C.D. Bangerter, and S.T. Demetriades

STD Research Corporation
Arcadia, California

Abstract

Space applications of magnetohydrodynamic (MHD) electrical
power generation can meet a variety of mission requirements.
These range from moderate amounts of electrical power (1-100 MW)
for periods of minutes to hours ("CW-MHD"), to very large
electrical pulses (1-1000 GW) over periods of 1-100 microseconds
("Pulsed MHD"). High repetition rates are feasible (thousands
per minute). By self-exciting the MHD generator (that is, by
applying some of the generated power to produce the magnetic
field), system complexity and weight are minimized. Small,
self-excited, combustion-driven MHD systems with mass-to—-power
ratios of the order 1 kg/kW and specific energy extraction rates
of 0.8 MJ/kg of fuel 2re being tested. Small, self-excited,
chemical explosion i~iven giant-pulse generators with
mass—-to-power ratios .. the order 0.001 kg/kW and specific energy
extraction rates of 0.4 MJ/kg of explosive have been tested. On
the basis of theoretical advances at STD Research Corporation,
this paper extrapolates the experimental results to date with
CW-MHD and Pulsed MHD devices to the expected performance in the
space environment. So far it appears that these specifications
can be exceeded in space. The fluid mechanics of high-
interaction, moderate-to-high magnetic Reynolds number MHD flows
govern (and will ultimately 1limit) the performance of such
devices. These fundamental limitations must be properly
understood before devices of these or better specifications can
be constructed.
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SELF-EXCITED MHD FOR SPACE PRIME POWER

ADVANTAGES

COMPACTNESS -- LOW SPECIFIC WEIGHT

HIGH POWER ~- HIGH SPECIFIC ENERGY EXTRACTION
SIMPLICITY ~- NO MOVING PARTS

STOREABLE -- NO MAINTENANCE

INSTANT READINESS - FAST S%ART/STOP CAPABILITY

HIGH REPETITION RATE
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SELF-EXCITED MHD FOR SPACE PRIME POWER

CRITICAL PROBLEMS

@  HIGH INTERACTION MAGNETOHYDRODYNAMIC FLOW BEHAVIOR

@ POWER GENERATION AT MODERATE-TO-HIGH
MAGNETIC REYNOLDS NUMBER

@  CONTROLLED HIGH-CONDUCTIVITY WORKING FLUID GENERATION
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Fig. 1. Interaction levels and specific energy extraction of
major MHD powar generation experiments and designs in the U.S.A.
and the U.S.S.R. All points a:e& STD Research Corporation
simulations of design or test conditions. Solid points indicate
validation of calculations by experimental test data. Interaction
regimes are arbitrarily divided on the basis of the degree of MHD
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“USING AN EFFECTIVE SOLID-FUEL PLASMA GENERATOR, SPECIFIC
POWER OUTPUT [AND POWER DENSITY] OF UP TO 0.6 MJ/K6 AND 500

W/CM3, RESPECTIVELY, WAS GENERATED.  FURTHER INCREASING THESE

PARAMETERS (AND ACCORDINGLY THE COEFFICIENT OF ENTHALPY EXTR-

ACTION) CAN BE ACHIEVED ONLY IF THE LIMITING EFFECT OF PROCESSES

ASSOCIATED WITH STRONG INTERACTION ARE SUPPRESSED, THE NATURE OF
THESE PROCESSES IS NOT YET FULLY UNDERSTOOD, THUS IT IS NECESSARY
TO CONTINUE THE STUDY OF THESE PHENOMENA.”

--Veriknov, Ye.P., €T AL.. "Factors INFLUENCING THE
SeLr-ExcitaTion oF PuLse Type MHD GeneraTors.,” June 1975
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Q & A -~ C. Maxwell

' From: H. Bloomberg, Beers Associates, Inc.

Have the resfults of 3-D simulations for high interaction
actually been confirmed experimentally? Are there references
on this?

A.
Yes, see Vetter el al., AIAA-80-0024,
Vetter et al., AIAA-81-0173,
Demetriades, et al., AJAA-80-0249
and Maxwell, et al., AIAA-80-0168

for example. Also, recent experimental work at Arnold
Engineering Development Center confirms 3-D magneto
aerothermal effect predictions made earlier (see Demetriades,
et al., AIAA~-81-0248, also Maxwell, et al., AIAA 81-1231 and
U.S. Dept. of Energy Report "Analytical Investigation of
Critical Phenomena in MHD Generators" presented at the
DOE/MHD Division Contractors Meeting 1 February 1982 by
STD Research Corporation)

From: Roy Pettis

wWhat factors determine the minimum power and energy
required by the battery used in the self-exciting process?
Can you always count on this initial excitation system
being small, in an absolute sense; or can this sub system
itself become physically large?

T WTARmeE————— - -

A.

The self-excitation threshold is determined by the
characteristics of the magnet and the impedance of the remain-
ing elements of the circuit. 1In particular, it is determined
by lcsses in the MHD generator which increase its internal
impedance at low current. Chief among these losses is the
electrode voltage drop.

LT Ta e TR TR o o e T

For a successful self-excited generator design, the
energy supplied by the exciter will always be a very small
fraction of the energy delivered by the MHD generator.
Depending upon the energy density of the exciter, its size
should also remain small compared to the MHD generator
system. In addition, there are ways of eliminating the

| exciter entirely from the system.
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Q &« A - C., Maxwell (Cont.)

From: P. J. Turchi, R & D Associates

Do your codes include chemistry and heat transfer effects
on conductivity near walls/electrodes?

Would they predict spoke phenomena?

A.

Yes. One of the early successes of the STD/MHD codes
was their ability to correctly predict near-electrode voltage
profiles and nonequilibrium phenomena, which depend strongly
upon these effects.

Yes. Not only can they predict the spoke phenomena, the
STD/MHD codes can also predict the random "dancing” or
flexure of the arc columns as well as the movement of the
arc spot on the electrodes,

From: P. J. Turchi, R & D Associates

Please comment on flow nonuniformities, (conductivity
and velocity), and their effects on generator performance.

What magnetic Reynolds number values correspond to the
extrapolated high interaction-parameter regime?

A.

Both are extremely important. For example, conductivity
nonuniformities cause severe deviations from the electrical
performance computed by l1- or 2-dimensional models. Velocity
nonuniformities cause extreme departures from ordinary 1-
or 2-dimensional gasdynamic computations (e.g., boundary
layer separation). In addition, there is strong, nonlinear
coupling between the two modes of nonuniformity which renders
devices impossible to operate as designed by l- and 2-dimen-
sional models.

We have analyzed MHD generators with magnetic Reynolds
numbers as high as r_ = 400/meter and interactioy parameters
based on pressure, i_ from 0.6 to 6/(meter tesla“). For MGD
accelerators, magnetic Reynolds numbers may be of the order
30émeter and interaction parameters based on pressure of
103 to 106/ (meter tesla?).
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"Chemical Sources: Research Needs"”

by
Massie, L.

(Paper not available)
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"Critique of MHD Power"

by
Jackson, W.

(Paper not available)

Q &« A -~ W. Jackson

From:

What are costs for MHD power that can be estimated for
space based system?

A.

Recent MHD cost estimating has been for commercial
terrestrial systems. All component costs have been estimated
using design approaches and matexrials described in my talk.

In the 1960's, weight and cost estimates were made of the
several space power systems described by session authors.

It would now be possible to take the methodology and technology
base data developed by DoE and use them to refine and update
these earlier calculations. I am not aware that this has

been attempted.
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LIQUID-METAL MHD FOR SPACE POWER SYSTEMS

E. S. Pierson .
Argonne National Laboratory
Argonne, IL. 60439

Abstract

The two-phase-generator liquid-metal MHD (LMMHD) energy-conversion
concept, developed at Argonne National Laboratory, appears very attractive
for space applications. It combines the high-temperature capability and
high power density of the previously-proposed LMMHD concepts with a high
cycle efficiency unattainable with these previous LMMHD concepts. The
operation of the Brayton-cycle (gas-cycle) and Rankine-cycle (vapor-cycle)
two-phase-generator LMMHD concepts is explained. The key features which
make LMMHD attractive for space applications are summarized. The current
status of LMMHD technology is discussed, with emphasis on the experimental
data. ANL has the technolagy base to analyze LMMHD systems for space power
applications, and to build prototypes at different temperatures.
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LIQUID METAL MHD
FOR
SPACE POWER SYSTEMS

HISTORY
DESCRIPTION
FEATURES
STATUS

E. S. PIERSON
ARGONNE NATIONAL LABORATORY
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VIEWGRAPH 1
Introduction

Liquid-metal MHD (LMMHD) energy-conversion systems were first proposed
in the early 1960s specifically for space power systems. The early LMMHD
concepts were .appropriate for the high-temperature environment envisioned
for space systems, but the efficiencies were low because of significant
energy losses. Research at Argonne National Laboratory (ANL) in the
middle-to-late 1960s, aimed at minimizing these losses, resulted in the
two-phase-generator LMMHD concept proposed here. This is the only LMMHD
concept discovered to date that appears attractive for commercial appli-
cations. One feature is that the efficiencies are higher than for al-
ternative existing or new concepts. Now it is proposed that the circle be
closed, and this high-efficiency LMMHD concept be applied to space ap-
plications which will utilize the unique combination of high efficiency and
high-temperature capability.




VIEWGRAPH 2

Schematic of LMMHD Brayton System

In the Brayton-cycle (gas-cycle) LMMHD concept, an inert gas, e.g.,
helium, is the thermodynamic working fluid, and a liquid metal, e.g.,
lithium is the electrodynamic fluid in the MHD generator. In operation,
the gas and liquid are combined in the mixer and the resulting two-phase
mixture enters the MHD generator. The MHD generator acts as a combined
turbine and electric generator; the gas expands, drives the liquid across
the magnetic field, and, thus, generates electrical power. Because the
1iquid has a high heat (energy) content, expansion occurs at almost constant
temperature, and a great deal of energy is still available in the gas that
leaves the MHD generator. (The liquid acts as an "infinite-reheat” source
for the gas, heat energy is continuously transferred from the liquid to
the gas, and most of the energy out of the generator comes from the liquid).
It is this almost-constant-temperature expansion that accounts for the
potentially higher efficiency of the two-phase LMMHD concepts. From the
MHD generator, the two-phase mixture enters a nozzle, where additional
gas-liquid energy is used {(as in the generator) to accelerate the liquid;
the resulting high-speed flow is separated in a separator (possibly rotating
to minimize losses), and the liquid pressure needed to return the liquid
through the primary heat exchanger to the mixer is obtained in the diffuser.
The nozzle-diffuser system may be replaced by a liquid-metal pump.

The gas leaving the separator still has considerable thermal energy,
'which must be used effectively in order to obtain the highest efficiency
for the system. It can be transferred from the hot gas to the colder gas
in a regenerator, extracted with a gas turbine, extracted with a steam
bofler, or used to provide heat for some other process. These components
can be combined.

Heat addition can be to the ligquid metal, the gas, or both. Because
the liquid-metal mass flow rate is much higher than the gas mass flow rate,
the heat addition can be solely to the liquid metal, with the gas being
heated by the liquid in the mixer, to yield a simpler system without a
significant effect on efficiency.
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VIEWGRAPH 3

Schematic of LMMHD Rankine System

The Rankine-cycle (vapor cycle) LMMHD concept differs from the Brayton-
cycle version only in the use of a condensable fluid, e.g., cesium, as the
thermodynamic working fluid with a compatible liquid metal, e.g., 1ithium.
Again the energy in the (superheated) vapor leaving the separator is
recovered in a regenerator, a low-pressure turbine, or used for process
heat, and heat addition can be solely to the liquid metal, with the vapor
being generated from the condensate in a direct-contact mixing boiler.
Because of the almost-constant-temperature expansion, LMMHD Rankine-cycle
calculated efficiencies are higher than those of conventienal steam plants
for the same source and sink temperatures.
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FEATURES FOR SPACE POWER SYSTEMS

® HicH POWER DENSITY
® No SoLID HIGH-TEMPERATURE MOVING PARTS

® FLUIDS ARE STABLE AT HIGH TEMPERATURES,
E.G., LITHIUM AND CESIUM

® RANKINE-CYCLE FOR BEST EFFICIENCY. LOWEST
WEIGHT AT HIGH HEAT REJECTION TEMPERATURES

® HieH EFFICIENCY., TypIcCALLY 1/2 TO 2/3
OF CARNOT EFFICIENCY

® EASILY COUPLED TO MoST HEAT SOURCES

® MATCH DESIRED TEMPERATURE RANGE BY
CHOICE OF FLUIDS

® ENERGY STORAGE IN KINETIC ENERGY OF
FLUID FOR PULSED APPLICATIONS

III-7-8 i




VIEWGRAPH 4

Features for Space Power Systems

LMMHD has- 2 number of features which make it very attractive for space
power systems. The simplicity of the concept, with no solid moving parts
required except for the condensed liquid pump at the lowest temperature of the
cycle, should result in high power density and high reliability. Although
both Brayton and Rankine versions are available, the Rankine version is
expected to yield the best efficiency and least weight/volume at the higher
heat rejection temperatures required for space. The use of two fluids enables
the LMMHD system to be easily and effectively coupled to almost any heat
source. Note that heat addition can be to the 1iquid metal, avoiding the need
for a separate boiler or gas/vapor heater. The concept may be well suited to
some pulsed power needs because energy can be stored in the kinetic energy of
the liquid metal.




STATUS OF LMMHD TECHNOLOGY

® SYSTEM ANALYSIS CAPABILITY EXISTS

® EXPERIMENTAL EXPERIEMNCE ON UNIQUE LMMHD COMPONENTS --
MIXER: AIR-WATER DATA

GENERATOR: EFFICIENCIES >0.6 AT HIGH VOID
FRACTIONS AND POWER DENSITIES

NOZZLE: JPL AND BIPHASE ENERGY SYSTEMS DATA

SEPARATOR: BAsIc STuDpI1ES, JPL AND BIPHASE
ENERGY SYSTEMS DATA

DIFFUSER: JPL AND BIPHASE ENERGY SYSTEMS DATA
® MATERIALS GENERALLY AVAILABLE

® LMMHD LOW-TEMPERATURE PROTOTYPE, JOINT
ANL-BEN-GURION UNIVERSITY-SOLMECS PROGRAM

L4
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VIEWGRAPH 5

Status of LMMHD Technology

ANL has developed extensive energy system analysis and optimization
capability. This capability is being applied to LMMHD systems for various
terrestrial applications, and the required component models and fluid
property routines have been developed.

Experimental and analytical studies of the non-standard components for
the LMMHD systems -- gas-liquid mixer, LMMHD generator, nozzle, separator,
and diffuser ~- have been conducted at ANL and elsewhere since the early
1960s. Examples of recent ANL component development progress are:

1. The measurement of generator efficiencies greater than 0.6 at
power densities equal to or greater than anticipated.for practical
generators, with a small ~20 kWe ambient-temperature generator.

2. The experimental demonstration that the slip ratio (the ratio of
gas velocity to liquid velocity) in generators decreases as the
electromagnetic interaction, liquid velocity, and temperature
increase.

3. The completion of basic studies of mixers and rotating separators,
and the development of prototype designs.

Jet Propulsion Laboratory (JPL) and Biphase Energy Systems have extensively
stqdied and tested nozzles, separators, and diffusers. Thus, the technology
exists to build and test a system to demonstrate the LMMHD concept.

The materials technology base developed for LMFBRs and CTRs ; ‘ovides a
sound basis for LMMHD systems. The extensive JPL experience with high-
temperature (up to 1400 K) lithium-cesium systems is especially applicable
to LMMHD space systems.

Planning has been underway for approximately a year on a joint program
to build a low-temperature LMMHD prototype in Israel. Participants would
be Solmecs Corporation, Ben-Gurion University of the Negev, and ANL. We
are waiting for the final go-ahead.
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Q § A - E. S. Pierson

From: J. Biess, TRW Systems

For a 10-50 kw liquid metal MHD Space Power System, what
would be the operating time or what is the limiting factor?
What would be the weight density and efficiency (energy)?

A.

Operating time depends on the needs and the heat (energy)
source. There are no inherent time limits other than long-
term erosion/corrosion of containment materials.

The power density and efficiency are unknown until
studies are done for space, both obviously depend on the
heat-source temperature which is undefined.

From: R. English, NASA-Lewis Research Center

Please cite materials data for containing Li-Cs mixtures
at high temperature.

Inasmuch as j x B forces act on the liquid in your MHD
generators, please describe how you prevent liquid-gas
separation at high void fractioms.

A.
Jet Propulsion Laboratory did experiments in late 1960's

to ~ 2000° F,

Experimentally gas-liquid separation is not a problem.
In fact, the ratio of gas to liquid velocities decreases
and approaches unity as the electromagnetic interaction is
increased. We suspect that the high electromagnetic pressure
gradient breaks up the bubbles. This is a good research
area.
From:

What does the separator look like?

What heat source temperature required?

What types of Rankine wprking fluids have been considered?

III-7-12
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Q & A - E. S. Pierson (Cont)
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Heat source temperatures of 420~1920 K (300°-30002 F) for
ground-based systems, probably 1100-1650 K (1500-2500"- F) for
space.

NaK - neo-hexane n 3og° F, tin-steam ~ 509° F (53 K),
lithium-cesium ~v 2000 F (1370 K)

II1-7-13
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SOLAR MHD SYSTEM WITH TWO PHASE FLOW
WITH "MAGNETIC" LIQUID METAL

Amit Goswawmi,* Ronald D. Graves and Carl Spight
' AMAF Industries, Inc. .
Columbia, MD

Abstract

Solar power is one of the major resources available to space systems.
Whereas the technology of solar cells and its limitations are well o
known, there is another technique, solar LMMHD, pioneered by H. Branover
and, E. Pierson which shows promise as a relatively high efficiency,

inexpensive and compact prime power device usable in space. The solar LMMED

system employs a liquid metal to extract heat from a mirror-solar col-
lector system. A second organic volatile liquid is then allowed to

come in contact with the hot metal and evaporate. The two phase fiuid
system then moves along a pipe, the gas imparting part of its flow
momentum to the liquid metal. The moving liquid metal passes through

a magnetic field perpendicular to the flow direction; thereby an induced
current is gemerated with is collected by the usual electrode ensemble.

The method has obvious mecits compared to, say, a Rankine cycle gystem
(in terms of attainable efficiency) or solar cells (in terms of cost),
but so far the actual efficiency achieved has been lmv,l This is
attributable to the inhomogeneity of the two phase flow. The gas passes
through the liquid metal mainly in the form of bubbles without sharing
much of its forward momentum. We suggest that an order of magnitude
improvement is possible on Branover's system if one combines the magnetic
fluid concept2 with the two_ phase flow.idea. The term magnetic fluid
refers to a suspension of small single~domain ferromagnetic particles

in a carrier liquid. A suitable magnetic fluid in the present context

is a suspension of iron particles in mercury. We theorize that the use
of magnetic fluid liquid meta] instead of a regular liquid metal for

the two phase flow will inhibit void formation when a magnetic field is
employed to align the magnetic particles in the direction of the flow.
The primary reason for this is the additional magnetic stress in the
medium which tends to inhibit the formation of any nonuniformity such

as a bubble or a void in the unperturbed medium. Preliminary calcula-
tions bear this idea out. )

Our contention is that if the two phase flow consisting of the organic
vapor and an aligned magnetic fluid is free of appreciable void fractioms,
then the momentum of the vapor will be uniformly dispersed to the liquid
metal, thus producing much greater velocity for the metal flow. Also

the electrical conductivity improves as does the stability of the two
phase flow against choking. These factors correspondingly produce greater
induced electromagnetic power.

There are some experimental stud}es in connection with fluidized beds
that bear out some of our ideas.” Calculations are now underway to
concretize these ideas toward the eventual building of a scale model.

*On sabbatical leave from the University of Oregon
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Viewgraph 1. Braﬁover's two-phase liquid metal solar MHD generator. We
propose to use a "magnetic liquid", such as single domain irom in mercury

with the iron particles aligned with the help of a longitudinal magnetic
field, instead of an ordinary liquid metal.
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View Graph 2. The Bernoulli equations for a single bubbdle.

Ordinary fluid:

2zp\g >+ R- £ = OK

i

Magnetic fluid:

2
laptYQR +R-F = 0*\<+€A:_%’_i.ff’-

Here ¢ is the velocity - potential, o is the surface tension, k is the
curvature of the bubble,H is the magnetic field and u is the permeability
of the "magnetic liquid." Clearly, the effect of the second term on the
right side in the second equation is to reducethe bubble size.




3
Viewgraph 3. The variation of the kinetic energy imparted to the liquid
by the bubble is shown as a function of the bubble's shape parameter y.
( = a(?b_g\ / (;LQ-GY/-’ j’-‘ »G is the shear rate) for a gas.bubble in an
ordinary fluid, see ref.”3. The bubbles break up when y reaches the low
value for which the imparted kinetic energy tends to be maximu. Since R |
the effect of magnetization is to break up the bubbles to smaller sizes, 1
we conclude that this should improve upon the K.E. imparted to the liquid ;
metal.
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Viewgraph 4. Fluidized bed data of ref. 4 shows that magnetization of . ‘_
the bed improves its fluidization as a gas passes through it, making :
the two phase flow homogenized and stable. The graph shows the scaling
of the transition superficial velocity UT of the flow with the magnetic
field, while .the minimum fluidization velocity Uy is independent of the
applied field, see ref. 4. In our case, the velocities are scaled up to
about | m/sec and the applied field required is of the order of a tesla,

~ quite tractable. . )
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viewgra'ph S. Branover and Yakhot (ref. 5) have derived the following
flow equation for their 2 ~ Phase I.mmn Model:

TSR PRERSCEE)-

- GuB (B ko)

Here u is the velocity of the two phase flow, }.\ia the mixture quality,
k (x) is the load factor and & is the void fraction. The rest of the

notation is standard. If the void fraction a is reduced as is expected
from the employment of a magnetic fluid, the left hand side of the above

equation would be much less apt to be < 0, thus eliminating the condir.iou
that leads to instabilities and choking.
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ATTSTY\ G

Q & A - A. Goswami

From: E. S. Pierson, Argonne National Laboratory

l. The basic ideas and technology for liquid-metal MHD
were developed at ANL, not by Herman Branours.

2. Ingtabilities in the MHD generator have not been a
problem in ANL experiments.

A.
Yes. I'm most fortunate to hear about your work and am

looking forward to talking with you at length.

From: Roy Rice, Naval Research Laboratory

In your magnetic fluid are reactions and Curie temperatures
a limitation. If so, will the use of ferrites be of sgignifi-
cant help.

A.

For solar MHD, consideration of Curie temperature is
not important. But for high temperature, we may have to
consider ferrites. Thanks. '
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The development of MHD for Qarious military applications

was initiated in the early 1960's and has continued to date.'
The early activities, such as LORHO and Project PErilliant were
directed toward specific requirements. This approach continued
through the 1970's as more and more technical efforts were direc-
ted toward high performance, lightweight applications requiring
airborne or space deployment. These efforts, which included con-
ceptual designs as well as hardware fabrication and experimental

programs increased the important performance parameters signifi-

cantly.
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The status of each of thé major components plays a sig-
nificant role in the overall system development. For the heat
source both liquid and solid fuel combustion devices have been
successfully demonstrated during various development programs.
Nuclear reactor heat sources of the NERVA type have been de-
veloped and advanced concepts such as the rotating bed reactor
are being pursued. Superconducting magnet systems have been
fabricated for relatively'small systems of less than 1 MV, and
conceptual design studies have been completed for MHD systems

as large as 50-100 Mv;.
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Several development programs have been completed which
have substantially increased the MHD channel performance and
decreased the MHD channel mass. These results have increased
the power density by a factor of three. Electrical power levels
investigated in these programs have ranged from a few hundred

kilowatts to tens of megawatts.
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Technical milestones for space applications of MHD are
primarily in the channel, magnet and systems portion of the
power system. The MHD channel lifetime at high current density
must be demonstrated for currents and lifetimes required. The
channel design and construction techniques required have been
demonstrated in several development programs, The superconduc-
ting magnet development requires a lightweight superconducting
magnet demonstration for a 10-30 MV; system. The total system
must be developed and packaged to satisfy mass, volume, and

interface requirements.
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The primary requirements for MHD space power systems are
mass and volume restrictions, reliability and maintainability
considerations, heat rejection capacity, and control of thrust
and exhaust products. Mass and volume requirements are established
by the mission requiremehts. The control of thrust and exhaust
products is required only for the open cycle system. However,
the thrust generated is of the same order of magnitude as that
generated for comparable sized chemical lasers, and consequently,

can be readily neutralized.
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Data are presented from the High Power Study sponsored
by the USAF Aero Propulsion Léboratory for liguid fuel systems
for airborne applications. These masses and volumes for the
systems shown are complete systems including all power condition-
ing, controls, and auxiliary equipment. The data show that for
a lightweight power supply system operating at 200 kV for 120
sec and producing 50 MW, the total system mass and volume are

=12,000 kg and =17 m>, respectively.
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Data are presented from the High Power Study sponsored by
the USAF Aero Propulsion Laboratory for solid fuel systems for
airborne applications. These masses and volumes for the sys-
tems shown are complete systems including all power condition-

ing, controls, and auxiliary equipment. The data show that for

a lightweight power supply system operating at 200 kV for 120
sec and producing 50 MV¥; the total system mass and volume are

212,000 kg and =15 m3, respectively.
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The MHD system performance parameters are shown for the
current systems developed during the High Power Study as well
as for the mid and far term systems. The data given are for
complete systems which include all power conditioning, controls,
and auxiliary equipment. The performance levels represent total
system performance including all system losses and inefficiencies.
The system shown generates 25 MVé at 60 kv and provides for run
durations of 120 sec. All systems investigated were capable of

pulse or steady—state operation.
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The MHD channel shown in the photograph is the 200 kvé
lightweight channel fabricated using a filament wound epoxy
coated fiberglass outer shell, This 40 kg channel successfully
completed a 250 thermal cycle test program, which included dura-
tion tests of up to 60 sec as well as pulse tests. At the con-
clusion of the test program the channel was in good condition

and producing the design level.
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The experimental co: i.tions for the High Power MHD System
development program sponsored by the USAF Aero Propulsion Lab-
oratory are shown. The experimentallconditions were obtained
during the test program. The performance parameters for the
detailed design o.. the channel and magnet are also shown. The

measured coanductivity is sufficient to achieve the design power.

l

III-9-21

S e A T e TR o T W Al e B i




"o

e EwY

358 [

WEEIY AL .,

P

E 2T

ity

LR RS

e

N4 4

P P

Joe

\5
~ -
. W »
A \\ ~ )

-ﬂ

ol

AL aA 4

£ X
Vot N e
ELPEFESVE Lk 3 PR PR T

. 308 -

- PO .. N




The diagnostics channel shown in the photograph was de-
signed and tested to measure the electrical conductivity in
the High Power MHD System program. This 63 kg channel was de-
signed for a flow rate of 30 kg/sec. The channel was construc-
ted using the novel lightweight channel fabrication techniques
which utilize a filament wound, epoxy coatecd fiberglass shell
as the principal structural member. The channel was successfully

operated during a combustor development test program.
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The 30 MR, liquid fuel generator system is shown in the
drawing. The system dimensions are approximately 1.25 m in
diameter and 3 m in length. The dry system mass is approxi-
mately 5000 kg. The superconﬁucting magnet is approximately
two meters in length with a peak field of 4.5 Tasla. The com-
bustor shown is a LO,/JP-4 system using CS €0, seed material,

The power conditioning and reactant storage tanks are not shown.

III1~9-27




413H3N3 ODNT

JNNTOA 82 SSYINMOT/ADNIIDIA4T HOIH o
NOILVH3IdO3STNd e

ALITGVdVOD 440 LNVLSNI/NO LNVLSNI e

111-9-28

SNOILIANOD DNILYHIdO SNOIHVA HOL4 ALITEIX3Td e

NOILOVHLX3 AdTVHLNI HOIH o |

SNOISNTONOD ANV AHVIWWNS

e )




The MHD power supply system can provide tens of megawatts

—— eex s O
.

of electrical power for space applications. The system has sub-
stantially operating flexibility for various operating times,
pulse lengths and pulse rates, and power levels. The instant on/
ingtant off capability provides the neceésary response to command
signals. The overall power system is a high efficiency, low mass

and volume device which is attractive for space applications.
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Magnetohydrodynamic Power Supply Systems
for Space Applications

Daniel W. Swallom
Avco Everett Research Laboratory
Everett, Massachusetts

The electrical power requirements for future space based
weapons systems of the 1990's may require power levels of 1-100M%.
Generally, these power requirements will be for pulsed power sys-
tems, which will often result in a very specific energy conver-
sion and power conditioning system for each application. In addi-
tion, other components of the power system such as heat rejection,
system controls, and spacecraft environment will be unique to this
application.

A high power magnetohydrodynamic (MHD) system is capable of
providing high performance, short duration electrical power for
the type of applications required by space based weapons systems.
The USAF High Power System Programs for the development of portable
MHD power supplies have shown that the generator system scales fa-
vorably as the generator size increases. Consegquently, the MHD
generator system becomes more attractive as the required electri-
cal power increases. For MHD systems capable of tens of seconds of
pulse lengths, power to mass ratios can be obtained which would
allow for multi-megawatt power supplies to be deployed for space
applications.

For space applications the power system must meet the regquire-
ments associated with satellite vehicles. These requirements in-
clude not only mass and volume constraints, but also reliability,
maintainability, adaptability, and deployability. V¥ith respect
to the combustor and channel mass and volume requirements, the
USAF development programs have demonstrated lightweight, high per-
formance power system components. Airborne studies have also been
completed which have defined the magnet and power conditioning com-
ponents as well as addressing the overall systems packaging.

The development of MHD technology for space applications will
permit the deployment of power systems capable of producing tens
of megawatts for pulse lengths of up to hundreds of seconds with
tens of pulses per mission. This capability can provide the neces-
sary power for space-based weapons systems envisioned for deploy-
ment in the mid 1990's.
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Q & A - D. Swallom

From: Roy Pettis

(1) what effects will the effluent from the generator exhaust
have on the other parts of the spacecraft, especially sensi-
tive optical components?

(2) Will the high velocity of high-interaction MHD systems
lessen the danger of such effluents depositing on the space-
craft?

(3) Is research on these questions underway?
(4) Where?

(5) Is the problem less for "cleaner fuels", HZ' rather than
those filled with particulates?

A.

(1) The effects of the MHD generator exhaust on the sensi-
tive optical components would be similar to a rocket combus-
tor exhaust or chemical laser exhaust.

(2) Probably, but the problem has not been investigated in
detail.

(3) No
(4) N/A

(5) The question of fuel deposition may be somewhat depen-~
dent on the fuel selected. However, the products of stoichio-
metric combustion for H, systems (H,0) and hydrocarbon
systemg (H,0 & CO,) are“gaseous spelies. Consequently, the
stoichiome%ry (fugl rich condition to maximize the electrical
conductivity ~ 10%) will probably be a larger influence on
the generation of particulates.

From: P. J. Turchi, R & D Associates

What are the hasic research issues that could allow
improvements in the system extrapolations you have made?

A.
The basic research issues which could allow for improve-
ments on the system extrapolations are directly related to

II1-9-31




Q & A - D. Swallom (Cont)

the technical milestones. These issues can be summarized on
a component basis.

Combustor - Basic research directed toward the combustion
phenomena of systems using high energy liquid fuels which
contain metallic particles for higher performance. 1In addi-
tion research work in the area of emulsions which permit the
Cs,C04, seed material to be mixed with the fuel before injec-
tion into the combustor.

Channel - Materials development program to insure that
the electrode materials.available can operate with current
densities up to 10 A/cm”® for operating times of 1000's of
seconds. In conjunction with the materials development pro-
gram, electrode configuration research should be closely
coupled to the materials research program to insure that a
viable, high temperature MHD electrode emerges as the product
of this research.

M: gnet - Lightweight, high strength composite material
development research is needed to develop the materials
necessary for the construction of lightweight, high field
superconducting magnets. In addition, development research
should be performed to investigate the potential ways of
using these composites to provide the highest strength,
lightest weight magnet structure.

Power Conditioning - The key research issue for power
conditioning is the high current solid state switch tech-
nology required for the intermediate dc to ac conversion
required for the dc-dc converter. .

Systems - Basic research in the area of electric charge
and/or effluence build up on the spacecraft surface as a
result of the hot, ionized exhaust products from the MHD
system.
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Q &« A - G. R. Seikel

From: A. Bridgeforth, JPL

Is long life turbine/compressor bearings still a limiting
factor?

Ao
Bob English will discuss this in his paper Tuesday.
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‘ Special Conference on
PRIME POWER FOR HIGH-ENWRGY SPACE SYSTEMS
February 22-25, 1982

MHD GENERATOR RESEARCH AT STANFORD

J. K. Koester, C. H. Kruger, and T. Nakamura
Stanford University

ABSTRACT

The behavior of MHD channels have been studied over a wide range of
conditions in the High Temperature Gasdynamics Laboratory at Stanford
University. This research is primarily experimental in nature with the use
of advanced diagnostic methods and comparable theoretical and numerical
studies for the interpretation of the data and application of the results
to large-scale generators. Experiments are conducted in an 8 MW¢p flow
facility with either clearn or dirty fuels and a variable 05/N; oxidizer
in the 0.6 m~2.7 T magnet or the smaller 6T superconducting magnet.

Present MHD research areas include MHD boundary layer interactioms,
Hall-field breakdown, plasma nonuniformities, plasma fluctuations and
magneto—-acoustic waves, surface deposits of slag, disk generators, and
electrode configurations. Plasma velocity, temperature, and electron number
density have been measured with spatial and temporal resolution by optical
diagnostics. These techniques include laser doppler velocimetry, generalized
line reversal, emission spectroscopy, laser fluorescence, far infrared
interferometry, laser transmissometry, and optical pyrometry. Other diagnostics
used are probe-tube microphones. cinephotography, and the AC resistance
instrument. Wtih this extensive diagnostic capability, many channel pheno-
mena such as «lectrode boundary layer Joule heating, sidewall boundary
layer velocity overshoot, slag particle size, effect of radicals (such as
PO}) on electron density, and surface deposit polarization have been observed,
measured, and compared with theory. These results are intended to provide
support for MHD hardware development in areas where performance limitations
and design constraints are not now adequately understood.
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FIG. 1. Schematic of a combustion plasma MHD flowtrain. By combining the
flows of liquid fuel, potassium salt solutions, particulate (ash, coal)
slurries, oxygen, and nitrogen, a wide range of plasma parameters are
produced for experiments. Various test sections with appropriate optical
ports have been used with advanced diagnostics (e.g. [l1]) for the
in situ measurement of MHD plasma behavior and plasma-surface inter-
actions.

FIG. 2. The M-8 (8 th) slagging electrode generator flowtrain before
‘ insertion in the conventional 2.7 T magnet.
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FIG. 3. The dual beam forward scatter anemometer used for measure-
ment of the velocity profiles in the insilator (sidewall) boundary
layer [2].
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FIG. 4. Sidewall velocity profile for the control case of no magne:ic
field and no current compared with the Stanford turbulent boundary
layer computer code [2].
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FIG. 5. Sidewall velocity profile showing the velocity overshoot l
effect caused by the MHD body forces. The data is in agreement
with a modified tubbulent boundary layer code by selecting the
level of channel turbulence. The velocity overshoot effect I
increases the skin friction and heat transfer rate to the
sidewalls [3]. ]

III-11-4 !




24 -
TURBULENCE INTENSITY
B=2.4T J:=0.74 c:nma/c:rn2

201 IIDATA UNCERTAINTY

0] 0]
o] o0
4-
L { ] 1 i -
o) 4 8 t2 1.6 20 2.4

FIG. 6. The turbulence intensity profile corresponding to the
previous velocity profile [ 3]. The effect of magnetic damping
and wall roughness on sidewall turbulence is under investigation.
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FIG. 7. The optical design of a scanning spectroscopic device for

the messurement of temperature and electron number density profiles
in the electrode wall boundary layer [4].
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FIG. 8. Measured temperature profiles in the anode boundary layer
with and without applied current. The effect of Joule heating on
the temperature profile compares well with theory {4,5].
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FIG. 9. Cross-section of the probe-tube microphone for the measure-
ment of pressure fluctnations in the harsh MHD enviroument over a
frequency range from a few Hertz to over 10 KHZ [6,7]. The response
of this device is made uniform by tailoring the acoustical damping

at the center of the probe-~tube.
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FIG. 10. The effect of magnetic field on pressure pulses formed by
a capacitive discharge (at time = 0) across an electrode pair:
Note that the MHD body force results in: an inversion of the
pressure pulse at higher magnetic fields [3].
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Luminosity voltage as a function of time from detectors
at the entrance, middle, and exit of the MHD generator.

3o

FIG. 11. Entropy waves were produced by a capacitive discharge upstream
of the test section and measured by luminosity probes viewing through 1
the center of an electrode. The luminosity probe voltage signals versus ‘YI
time at three channel locations show the entropy (temperature) pulse
convected through the channel [8].
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FIG 12. The voltage-current characteristic for an axial discharge
across a 19 mm magnesia interelectrode insgulator. The transitions
to the low voltage-tigher current mode result in a destructive arc.
Two types of breakdown were observed: a fast plasma breakdown and
a slow insulator breakdown which occurs at a lower threshold voltage.
[9,10].
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FIG 13. Typical behavior of the inter-electrode insulator region
during a "slow" axial breakdown acrosa a 7.5 mm gap. This sketch
was constructed from a cine frame taken v 4.5 seconds after the

voltage was applied [9].
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FIG 14. Threshold voltage as a function of insulator gap size.
Figure shows the highest voltage for which no breakdown occurred
! and the lowest voltage for which breakdown occurre’, thus establish~
. ing the breakdown threshold for plasma and insulator breakdown.
Data for lmm, 9mm and 18mm gaps taken from experiments described
in reference [10]. All insulators were MgO except the lmm gap,

which was dense alumina.
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FIG. 15. Transverse discharge mode for slagging metal anodes. The
slag film forms from ash deposits which build up until the surface
becomes fluid (typically v lmm in thickness). The critical
current density for diffuse to arc mode transition was investigated
as a function of electrode temperature for various electrode materials

(12,13].
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FIG. 16. A large fraction of slag electrical conduction is due to ion
transport (largely Fe'™ and K*). This causes the slag layers to
polarize becoming highly resistive at the anode and highly conductive
at the cathode. The axial resistance between neighboring electrodes
was measured during MHD generator operation with an AC resistance
instrument. Here, the change in axial resistance at the anode
and at the cathode is correlated with a charge transfer parameter

[14].
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cathode

FIG. 17. Computed distributions of current (a) and voltage (b) for
the conditions of a slagging platinum-rhodium capped electrode experiment.
The magnetic field is 2.6T, electrode temperature is 1700K, and the
average current density = 0.8 A/cm2. The current distribution in the
slag layers is shown by the expanded scale plot (c). The polarized
value of slag conductivity was estimated by adjusting its minimum
value until the experimental voltage probe distribution matched that
of the model. Note the large leakage currents in the slag over the
intercathode insulators. This large leakage results in excessive
Joule heating with a partial thinning of the slag layer [15].

III-11-16




INLET TORUS

CIRCULAR
COMBUSTION GAS MAGNET COIL

ANOOE
. LOAD
CATHODE LOAD
TO DIFFUSER
CATHOOE B8

X

m—————
o 1 2 3
METERS

FIG. 18. Conceptual design of a baseload inflow disk generator (1250 MW(th))
The combustion gas from four combustors is distributed around the outer
radius of the channel by a scroll and is injected tangentially inward.

' . At the exit of the channel the gas flows axially out into the diffuser.

i A feasibility study of the inflow digsk MHD generator for baseload

! ' applications was performed. Each design element, i.e., the combustor,

the inlet flow patch, the generator channel, the diffuser and the magnet,

{ was studied in detail in order to provide a comprehensive assessment

i of the inflow disk generator. Based on these results, the performance

' of the inflow disk generator was calculated. It was shown that the
performance of the inflow disk generator is similar to that of the
diagonal generator within the uncertainty of the analysis.
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FIG. 19. The genmerator channel shown in FIG. 19 and 20 is designed to
allow experiments both with clean fuel and coal up to a maximum thermal
input of 3.5 MW. The channel is of water-cooled peg wall construction.
Copper pegs capped with stsinless steel are installed in fiberglass
reinforced epoxy (G-10). Each peg is insulated in the azimuthal
direction as well as in the radial direction in order to measure
possible nonuniformities or instabilities. The objective of the g
program is to investigate: .
(1) The effect of scroll induced nonuniformities on generator
performance; -
(11) The current discharge phenomena taking place at the electrode '
surface and in the generator core;
(111) The boundary layer and the slag surface effects. .
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FIG. 20. Planview of the 3.5 MW, experimental digsk gemerator.
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Q & A ~J. K. Koester

From: P. J. Turchi, R & D Associates
Why is there a critical current density?

A,

A critical current density occurs at the anode due to the
electrothermal instability. Many materials associated with
the channel (slag layers, ceramic electrode, the plasma)
have electrical conductivity that is strongly temperature
dependent. As dlno increases, the critical current density

ar
decreases. For the slag coated elctrode case, the slag breaks
down (into arcs) before the plasma boundary layer.

A critical current density occurs at the cathode due to
limitations on the thermionic emission of electrons at the
electrode surface (or the slag layer surface).
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TECENOLOGICAL BOUNDARY CONDITIONS FOR NUCLEAR
ELECTRIC SPACE POWER PLANTS

A. P, Fraas

- ABSTRACT

A serious attempt to assess the potential and feasibility of the many
candidates for nuclear electric space power applications must confront some
basic technological facts that limit what one can reasonably hope to
accomplish with any given concept. First, the upper limit to the efficiency
of any thermodynamic cycle was defined by Carnot, and the subsequent 160
years has not only disclosed the character and magnitude of the many losses
that regretably but inevitably make the efficiency of any actual cycle much
less than that of an ideal cycle, but has also shown the upper temperature
limit attainable with the materials available for any actual cycle. The
cycle efficiency determines not only the thermal energy output of the
reactor required for any given electrical power output (and thus the size
and weight of the reactor and shield assembly), but also the size and
weight of the radiator to reject the waste heat. Materials considerations
such as corrosion, strength, and radiation damage at elevated temperatures
establish basic limits on the design of the reactor, shield, turbine|
generator, and other key components. Allowable radiation doses to personnel,
lubricants, elastomers, and electronic components determine the size, weight,
and shape of the reactor shield after account is taken of such factors as
activation of the reactor coolant, directional differences in the degree of

" shielding required for the spacecraft in question, and radiation scattering

from structures such as the radiator. Further, an exceptionally high
reliability with essentially no maintenance is required. Assessments for a
wide variety of systems show that they differ greatly in the reliability
probably achievable, with only a few systems giving promise of meeting the
stringent requirements. This problem is closely related to that of

reactor safety — a technically complex subject rendered still more difficult
by public perceptions and the current antinuclear hysteria. Again, studies
have shown basic differences that make some systems more acceptable than

‘others. Additional problems include the control of free liquid surfaces

under zero -g conditions, instrumentation and control, and meteoroid
protection of the radiator. The more significant information available on
these factors as gained from experiments and design studies is rcviewed
with particular attention to the implied technological limitations on the
size, weight, performance, and developmental feasibility of nuclear
electric space power plants.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

/Z'I'l.l’“-"‘?'“ la
Effects of the emitter/on the output of a typical thermionic
cell. \

The weight of the radi..or for per unit of waste heat rejected from
the thermodynamic cycle drops as its temperature is increased, but
the efficiency of the cycle drops rapidly. The combined effects
define both the temperature that gives the minimum specific weight
for any given cycle and working fluid. The lowest radiator
specific weights are obtained with alkali metal vapor Rankine
cycles.

In sy.*ems handling high temperature fluids, corrosion and deposits
are faciors that commonly limit the life of the system. Corrosion
rates increase with temperature, and her e, corrosion considerations
commonly limit the peak temperature in the thermodynamic cycle and
thus the cycle efficiency. For Fe~Cr-Ni alloy systems, the

highest peak cycle temperature and lowest corrosion rates are given
by boiling potassium or cesium systems.

The weight of the boiler and high temperature piping for a Rankine
cycle system depends on the ratio of the creep strength of the
structural alloy to the vapor pressure of the cycle working fluid.
Increasing the cycle peak temperature gives a drop in the creep
strength and an increase in the vapor pressure so that the
resulting increases in the wall thicknesses and component weights
reach a practicable limit that often defines the peak cycle
temperature.

The size and weight of a turbine drop rapidly with an increase

in turbine wheel tip speed, but the stresses increase rapidly, and
the creep strength drops rapidly with an increase in temperature.
These considerations favor the use of the molybdenum alloy TZIM,
the highest strength alloy available. Plotting both the stress
induced in the blades by centrifugal force against tip speed

and the allowable creep stress against temperature show
graphically the limiting combinations for these three parameters.

Reducing the number of stages in the turbine for a given set of
conditions reduces its size and weight, but it also reduces the
aerodynamic efficiency. The high atomic weight of cesium gives
both a smaller number of stages and a smaller diameter turbine
than obtainable for potassium when allowances are made for
aerodynamic, moisture churning, and seal leakage losses.

The smallest number of system components is given by a single-
loop system with a boiling reactor and a direct condensing
radiator.

The subtle nuclear and boiling flow stability problems of a
boiling reactor can be avoided by adding components to give a
two-loop system with a primary liquid circuit that carries heat
from the reactor to the boiler for the Rankine cycle system. This
increases the number of components by about 50%.

IV=2-2
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Fig. 9.

Fig. 10.

A threqr}oop system can be employed to avoid both the problems of
a boiler- reactor and a direct condensing radiator as well as
provide redundancy in the heat rejection system. This gives about
three times the number of components required for the single-loop
system. .

Configuration for a 45-degree shadow cone shield for 450-kWt
heat pipe reactor core having a diameter of 9.9 in. and a length
of 12 in. The shield weight was estimated to be 14,700 lbs for
radiation doses at a 100-ft radius of 3 rem/hr within the
shadow cone and 100 rem/hr outside the shadow come, Increasing
the shadow cone angle to 90 degrees and reducing the dose at
100 ft cutside the shadow cone, increased the shield weight to
25,000 1bs. L./ 22 .
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Figure 6. Three-loop system with a liquid-cooled reactor loop
heating the boiler of a Rankine cycle loop coupled to a set of parallel
indirect radiator loops.
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AND OPERATING TEMPERATURES ON DIRECT CONVERSION POWER SYSTEMS
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ABSTRACT

This paper presents the results of a parametric study of unmanned
space nuclear reactor power systems utilizing either thermoelectric or
thermionic energy converters. An in-core reactor design and two heat
pipe cooled out-of-core reactor designs were considered. One of the
out-of-core designs utilized long heat pipes (LHP) directly coupled to
the energy converters. The second utilized a larger number of smaller
heat pipes (mini-pipe) radiatively coupled to the energy converter. In
all cases the entire system, including the power conditioning subsystem
and its radiator, were constrained to be launched by a single shuttle.

The mass and size of each system was studied as a function of
several variables including: power level, lifetime, number and size of
core heat pipes, fuel swelling model, reactor and heat rejection tempera-
tures, converter type and performance level, allowable radiation dose at

the payload, shadow shield cone angle, power conditioning temperature and
efficiency, etc.

The most critical component determining system performance is the
reactor. Its design is driven by concerns for fuel swelling rate which
is in turn dependent on the nature of the swelling, reactor power level,
and the number and size of the heat pipes used to cool the core.

Previous performance projections for the SPAR thermoelectric out-
of-core design were largely confirmed, although production of 100 kWe
will require a thermal power level of 1600 kW., not 1200 kW, as originally
expected. Such a system can potentially deliver up to 300 ﬁwe prior to

reaching the size 1imit of the shuttle if a larger number of reactor core
heat pipes are used.

Power levels exceeding 1 1/2 MWe are possible if the reactor core
temperature is increased (above ~ 1800 K) to permit use of thermionic

converters. Fuel swelling control in this case should be possible if
the minipipe core design is used.

Power levels of 5 MWe with 1ifetimes of thousands of hours may be
possible with advances in fuel swelling control and conversion system
performance (either thermionic or thermoelectric). Greater than 10 MWe

may be possible for short lifetimes. The advances required to achieve
these objectives are described.
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This study was based on analytical models of each of the key
subsystems of an unmanned reactor space power plant, as shown above.
These subsystems were combined in an overall power plant model which was
constrained to fit within the shuttle bay. Only fast reactors were
considered. Two out-of-core heat pipe cooled reactor designs were tested
utilizing either thermionic or thermoelectric energy converters. One in-
core thermionic reactor design was also considered.
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LONG HEAT PIPE TYPE OF OUT-OF-CORE POMWER PLANT




The first shield location, as illustrated here, is typical of the
SPAR-type system. The proximity of the shield to the reactor results in
a minimal shield mass. However the high temperature heat pipes from the
reactor must pass around or through the reactor, with attendant technical
difficulties. -
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By locating the converter between the shield and reactor, as shown
here in the mini-pipe design, it is possible to minimize the length of
the high temperature heat pipes. However a large shield is required,
and low temperature heat pipes must still pass the shield to reach the
primary radiator.
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Radiation coupling of heat from the reactor to the energy converters
was used in the mini-pipe design. This concept eliminates the need for a
high temperature electrical insulator which also passes heat. It permits
mechanical de-coupling of the reactor heat source and energy conversion

subsystems, a significant advantage in avoiding differetial thermal
expansion difficulties.
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A variety of 100 kWe designs were studied. Two levels of thermo-
electric performance, well demonstrated and near-term were considered.
Three thermionic operating points were treated, two corresponding to
specific converter demonstrations and the third to an improved near-term
performance level. The reactor temperature for the thermionic systems
is several hundred degrees higher than that of the thermoelectric systems.
Depending on 1ifetime and design, the specific mass for these systems
varied between 16.5 and 30.5 kg/kWe. The biggest differences between
systems were in size. The thermionic systems are about half the size of
the thermoelectric because of their smaller radiators.
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* The ability of varijous systems to scale-up in power is illustrated

here; near-term conversion system performance levels are assumed. Circles
appear on each line when the length of the power system exceeds that of
the shuttle bay. Because of its lower efficiency and heat rejection
temperature the thermoelectric system is size-limited to below 350 kWe.
The in-core thermionic system can achieve 700 kWe. The mini-pipe therm-
jonic design reaches 1.2 MWe in a single shuttle launch.
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The peak power d2livered in a pulsed system is illustrated here. It
is assumed that the pulse length is short, on the order of a second or
less. With this constraint the thermionic system can provide pulsed
power of up to 5 MWe. This is the result of the fact that proportionately
little heat flows through the thermionic converter when it is operating
open-circuit and not delivering power. Substantial quantities of heat
continue to flow through the thermoelectric converter under similar open
circuit conditions. The limiting size of the pulsed thermoelectric system
is about the same as a steady-state system.
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Given shuttle size constraints the thermoelectric system produces
substantially more power than the thermionic system if temperatures are
held below 1400 K. Above about 1500 K the thermionic system is more
effective, even assuming the thermoelectric system could operate at
higher temperatures with the same value of Z (for Si-Ge + GaP) achieved
at its present high temperature 1imit. The power conditioning radiator
limits the size of the thermionic system to 1.2 MWe, assuming a power
conditioning efficiency of 90% and a power conditioning radiator tempera-
ture of 408 K. Under these conditions there is little incentive to go
above 1700 K with the converter. However, if the power conditioning
efficiency is increased, or its temperature increased, its size is
reduced. Then further increases in converter temperature result in higher
output power levels. As shown, with a power conditioning efficiency of
95% it is reasonable to expect 1.8 MWe with near-term thermionic perfor-
mance and temperatures of 2000 K,
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Improvements in conversion system performance can lead to substan-
tially higher power systems. By eliminating the arc-drop in the thermionic
converters, continuocus power levels between 2.5 MWe and 5 MWe, Lecome
possible, depending on power conditioner efficiency and design tempera-
ture. Similar levels would be reached with thermoelectric converters if
| their figure-of-merit Z can be increased to above 3 x 10" K™! at high
‘ operating temperatures.
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An important concern in all reactor power systems with long design
lifetimes is fuel swelling. The studies reported here assumed, conser-
vatively we believe, swelling based on Arrenhius functions of temperature
as described in Reference 1. Tkis plot shows the impact of an even more
conservative assumption; that it is necessary to fill one-half the core
with tungsten, to keep swelling levels to 15%. The mass of a low power
(100 kweg system might double if this were done, but at 1 MWe the system
mass would increase only 30%. This illustrates that even extreme measures
may be taken, if necessary, to control fuel swelling and still produce an
acceptable system mass at high power levels,
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